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Preface

The international conference Philosophy, Mathematics, Linguistics: Aspects
of Interaction 2012 (PhML-2012) was held on May 22-25, 2012 at the Euler
International Mathematical Institute (EIMI), which is a part of the St. Petersburg
Department of Steklov Mathematical Institute (PDMI). This conference was the
second sequel in the PhAML series of conferences intended to provide a forum
for the presentation of current researches, and to stimulate an interdisciplinary
dialogue between philosophers, mathematicians, logicians, computer scientists
and linguists.

The first PhAML conference was held in 2009 and was initially conceived as a
part of the World Philosophy Day in Russia proclaimed for 2009 by UNESCO.
The first conference clearly revealed the need for the scientific community in
a broad dialogue between representatives of natural sciences and humanities
because of the increasing mathematisation of scientific knowledge. The project
was successfully continued with PhML conferences in 2012 and 2014.

As it often happens in science, similar tendencies appear almost simulta-
neously in different research centers. It is noteworthy that in recent years,
numerous international conferences with interdisciplinary topics are organized
in many countries. Apparently, the reason for this lies in the fact that the con-
temporary social development is characterized by intensive contacts between
different cultures, in which the understanding of human phenomena and the
knowledge of the world are achieved in the interaction of various forms of col-
lective consciousness and professional scientific activity — in art and literature,
in humanities and natural sciences.

It is generally recognized that the globalization is a characteristic feature of
the contemporary stage of civilization development. In the field of material
production, the globalization manifests itself in the international division of
labour, in which the most of high-tech products include components made in
several countries. In the field of culture, the globalization manifests itself in the
free availability of works of literature, music, fine arts, cinema, no matter where
they were created. Butin sciences, the globalization is manifested not only in the
free availability of scientific research results offered in open access publications
on the Internet, but also in the wide development of interdisciplinary researches,
in which previously isolated sciences fruitfully interact, and where fundamental
research and applied research are complementary.

The most important sign of this phenomenon becomes the increasing math-
ematisation of all sciences, which began in the Modern Ages. In this regard,
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in the preface to his Metaphysical Foundations of Natural Science, 1. Kant
asserted in 1786 that “in any special doctrine of nature there can be only as
much proper science as there is mathematics therein.’{T|

The process of mathematisation is obviously manifested in the constant ex-
pansion of application areas of mathematics invading today not only in the
natural and technical sciences, but also in the humanities. Now, the scientists,
who are working in the humanities, and mathematicians, who are interested
in the expansion of the field of applications of mathematics, have a serious
need for interdisciplinary dialogue and personal contacts to discuss various as-
pects of interplay between mathematics and humanities. That is why in 2011,
the Scientific Council of the EIMI decided to hold on May 22-25, 2012 the
international interdisciplinary conference PhML-2012, the subject of which
would constitute different aspects of interaction of philosophy, mathematics,
linguistics, and the main goal would be to broaden the dialogue between math-
ematicians, logicians, computer scientists, philosophers and linguists.

The PhML series of conferences was organized with the intention to reveal
that the “effectiveness of mathematics in the natural sciences”[?| pointed out in
1960 by Eugene Wigner, is also manifested in such humanities as philosophy
and linguistics. Following Wigner: “The miracle of the appropriateness of
the language of mathematics for the formulation of the laws of physics is a
wonderful gift which we neither understand nor deserve’J’| A possible way
to explain the applicability of mathematics was suggested by Alain Connes in
reflections on the nature of mathematics he expressed during the talk Espace-
temps, nombres premiers, deux défis pour la géométrid® given on November
12, 2010 at the Institut Henri Poincaré, Paris, where he said in particular:

C’est qu’il faut essayer de comprendre quand les gens vous posent la ques-
tion : « A quoi les mathématiques sont-elles utiles ? » En fait, les mathé-
matiques, c’est sans doute 1’usine la plus performante pour fabriquer des
concepts, et des concepts, apres, qui servent partout[’](03:42 — 03:59)

Concerning the universality of concepts, Emile Durkheim wrote in 1912:
“conversation and intellectual dealings among men consist in an exchange of

Metaphysical Foundations of Natural Science. In H. Allison and P. Heath, eds., Immanuel
Kant. Theoretical Philosophy after 1781, p. 185. Cambridge University Press, UK, 2002.

2E. P. Wigner. The Unreasonable Effectiveness of Mathematics in the Natural Sciences.
Communications in Pure and Applied Mathematics, 13(1):1-14, 1960.

3Ibid., p. 14.

4Watch this talk on Vimeo athttps://vimeo.com/24504403, on the page maintained by
the Société Mathématique de France.

5Our translation of this quotation is: “It is that you should try to understand when people ask
you the question: ‘For what mathematics is useful?’ In fact, the mathematics is probably the most
efficient factory to produce concepts, and such concepts that, afterwards, serve everywhere.”
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concepts. The concept is, in essence, an impersonal representation. By means
of it, human intelligences communicate.’{9|

For such an exchange of concepts, the PAML conferences provide a forum for
philosophers, linguists, and especially for working mathematicians and logi-
cians who are interested in philosophy and linguistics, and who have something
to say in these domains of knowledge on the basis of their own professional
practice where mathematics intervenes in philosophy/linguistics as a factory of
concepts and/or as a factory of structures. And this is done for the purpose to
analyze the philosophical/linguistic problems in mathematical terms, to draw
philosophical/linguistic conclusions from philosophical/linguistic hypotheses
by a mathematical proof, and to construct mathematical models in which one
can study philosophical/linguistic problems. This means that the conferences
of PhML series aim to promote mathematical methods in philosophy and lin-
guistics. But the conferences of PhML series are not limited in this issue; they
are interested in the philosophy of mathematics and logic, as well as they are
interested in other related issues mentioned on their CfP webpages.

Moreover, the organizers considered as important to invite for participa-
tion in the conference PhML-2012 the scientists of the last wave of Russian
emigration. As a result of extensive preparatory work, the conference PhML-
2012 had brought together 37 registered participants from 11 countries. Apart
from plenary sessions intended to present invited papers, there were also par-
allel sessions of thematic sections to present contributed papers. In addition,
the conference featured a panel discussion entitled The Heritage of Kant and
Contemporary Formal Logic.

It is worth noting that the conference PhML-2012 aroused great interest
among researches of the PDMI, graduate students, faculty and staff members of
the St. Petersburg State University, members of the St. Petersburg Mathematical
Society, members of the St. Petersburg Philosophical Society, and among the
wide scientific community of St. Petersburg. Some talks had gathered such
an audience that the EIMI conference-hall was overcrowded. Following to the
general opinion of organizers and to numerous comments of participants, this
second conference in the series PhML was highly successful.

The conference PhAML-2012 is presented on the website of the Euler Inter-
national Mathematical Institute at http://www.pdmi.ras.ru/EIMI/2012/
PhML/index.htm. The working languages of the conference were Russian and
English, but for a better understanding between the participants, when giving a
talk or speaking in discussions, all used English. With this in mind, in printed

E. Durkheim. The Elementary Forms of Religious Life, p. 435. The Free Press, NY, 1995.
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announcements about the schedule and the program, and in announcements
on the Internet about the conference, organizers used the spelling of personal
names and titles of talks in English.

At the conference PhML-2012, there were presented 23 invited talks in
plenary sessions and 6 contributed talks in parallel sessions of two the-
matic sections Mathematics and Language and Logic and Semantics. The
contents of most of the papers are outlined in brief abstracts presented on
the EIMI website at http://www.pdmi.ras.ru/EIMI/2012/PhML/index_
files/abstracts_PhML_2012.htm. This table of abstracts lists all the talks
given at the conference. The actual volume of the Proceedings of PhAML-2012
provides an opportunity for readers to acquaint with a selection of expanded
papers those were presented during the PhAML-2012 conference.

Since the Studies in Logic is a reviewed series, all the papers have had to be
passed through the peer reviewing process of the type “Single Blind Review”,
that is, a paper is sent to reviewers in such a form as it is prepared for publication
by the author(s), but the names of reviewers are hidden from the author(s). In
result, all papers of the present Proceedings were peer reviewed, in most cases
by more than one referee, and sometimes by four referees. The published
versions of original talks given at the conference have benefited greatly due to
the cooperative work of authors and reviewers during such an editorial process.
I am very grateful to all reviewers, without whose work the present Proceedings
of PhAML-2012 would not have been possible to realize in its actual form.

The only papers being kept intact in the editorial process are the papers
of Jaakko Hintikka and Grigori Mints, who were passed away while these
Proceedings were been prepared. Their original papers are accompanied by
detailed—however indispensable—commentaries written for this volume by
Gabriel Sandu, Roy Dyckhoft and Sara Negri, to whom I am very grateful.

The project to publish the Proceedings of PhML-2012 dates back to the
August 2013 when Grigori Mints accepted my proposal to head the prospective
editorial board. We planned to start editorial work after the next conference
PhML-2014 were completed in April 2014. To my deepest sorrow and regret,
he suddenly died on May 29, 2014, and the work could not start as planned.
One year later, I had returned to the project. Now, after two years of intensive
editorial work, I propose the present volume to the attention of researchers who
are interested in those aspects of the interaction of philosophy, mathematics,
and linguistics that were discussed during the conference PhML-2012.

Oleg Prosorov
St. Petersburg Department of
Steklov Mathematical Institute
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Abstract: Kant considers his Critique of Pure Reason to be founded on the act
of judging and the different forms of judgement, hence, take pride of place in his
argumentation. The consensus view is that this aspect of the Critique of Pure Reason
is a failure because Kant’s logic is far too weak to bear such a weight. Here we show
that the consensus view is mistaken and that Kant’s logic should be identified with
geometric logic, a fragment of intuitionistic logic of great foundational significance.

1. Preview

Below the reader will find a condensed revisionist account of Kant’s so-called
‘general logic’, usually thought to be substandard, even when compared with the
traditional logic of his day [4]{'| Ultimately our interest is in the formalisation of
Kant’s ‘transcendental logic’ (for which see [[1]), but since transcendental logic
takes its starting point in the judgement forms listed in the Table of Judgement
(most of which have their origin in general logic) we must take a close look at
the actual logical forms of these judgements. The result of this investigation is

We are grateful to the referees for insightful comments.

'Not to mention the scathing verdicts from the standpoint of modern logic which we take
to have started with Frege and Strawson.

© The Author(s) and College Publications 2017



2 T. Achourioti and M. van Lambalgen

that Kant’s general logic is not monadic, not finitary, not classical, and perhaps
linear rather than intuitionistic. We will here not elaborate on the last poin{’|but
we will restrict ourselves to stating a completeness theorem identifying Kant’s
general logic with a fragment of intuitionistic logic.

2. Validity in general logic

The key to any insightful formalisation of Kant’s logic is the observation that
judgements in Kant’s sense participate in two kinds of logics: general logic
and transcendental logic. Here is how Kant introduces ‘general logic’ in the
first Critique [1]]:

[Gleneral logic abstracts from all the contents of the cognition of the un-
derstanding and of the difference of its objects, and has to do with nothing
(A55-6/B80) but the mere form of thinking. (A54/B78)

And later, with a slightly different emphasis:

General logic abstracts [...] from all content of cognition, i.e. from any
relation of it to the object, and considers only the logical form in the relation
of cognitions to one another, i.e. the form of thinking in general. (A55/B79)

So what is the ‘mere form of thinking’?
The first two paragraphs of the Jésche Logik [S]] marvel at the fact that all of
nature, including ourselves, is bound by rules. It continues:

Like all our powers, the understanding is bound in its actions to rules [ . . . ]
Indeed, the understanding is to be regarded in general as the source and
the faculty for thinking rules in general [...] [T]he understanding is the
faculty for thinking, i.e. for bringing the representations of the senses under
rules.

From this it derives a characterisation of logic:

Since the understanding is the source of rules, the question is thus, according
to what rules does it itself operate? [ ...] If we now put aside all cognition
that we have to borrow from objects and merely reflect on the use just of the
understanding, we discover those of its rules which are necessary without
qualification, for any purpose and without regard to any particular objects,
because without them we would not think at all. [...] [T]his science of
the necessary laws of the understanding and of reason in general, or what

2Grigori Mints was planning on studying the connection between Kant’s disjunctive judge-
ment and multiplicative linear logic.
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is one and the same, of the mere form of thought as such, we call logic. [5,
pp. 527-8] (cf. also A52/B76)

To appreciate the real import of this passage, one must resist the temptation to
consider logic as consisting of a motley set of inference rules, such as modus
ponens and syllogistic inferences, even though the Jésche Logik will later list
these too. Two definitions are pertinent here:

§58 A rule is an assertion under a universal condition. [5, p. 615]

Here it is important to bear in mind Kant’s notion of universal representation
as ‘a representation of what is common in several objects’ [5, §1, p. 589]. A
rule is, therefore, applicable to a domain of indefinite extension.

The second definition is that of an inference of reason:

§56 An inference of reason is the cognition of the necessity of a proposition
through the subsumption of its condition under a given universal rule. [5,
p. 614]

At this point we will not yet provide an elaborate explanation of the notion
of ‘condition’, but the reader is invited to take modus ponens as a concrete
example. We then have the following sequence of ideas: (i) the understanding
operates according to rules, (ii) the understanding’s operations are necessary
insofar as they pertain to the formal features of rules, and (iii) the most general
formal principle is rule-application (or rule composition — as we shall see
the distinction was not always made in those days). Thus Kant’s logic has a
general and constructive definition of validity, a consequence of the meaning
of ‘rule’. The Jdsche Logik will give concrete instances of this most general
principle, such as modus ponens, but the full force of the principle will only
become apparent when we come to discuss the true logical form of Kant’s
‘judgements’. We must note here that the general inference principle limits
logic to judgements that can be seen as rules. We view Kant’s emphasis on
rules and their structural properties as marking the ‘formal’ character of his
general logic. The definition of validity just given should be contrasted with
the Bolzano-Tarski definition of validity: ‘an argument is valid if its conclusion
is true whenever its premises are’ — for in this part of Kant’s logic (what he
calls ‘general logic’) there is no truth yet, there are only rules. A different kind
of logic, ‘transcendental logic’ will introduce truth.
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3. Three definitions of judgement and a Table ...

Any modern logic textbook makes a strict separation between syntax, seman-
tics and consequence relation, and makes no reference at all to psychological
processes that may be involved in a concrete case of asserting a syntactically
well-formed sentence. These processes are studied in psycholinguistics, and
start from the assumption that there are specific syntactic and semantic binding
processes at work in the brain. For logical theorising such psycholinguistic ap-
proaches are deemed to be irrelevant. For Kant they are in fact of the essence,
and his definitions of judgement also contain a cognitive component.

But the reader trying to piece together Kant’s views on logic may be forgiven a
sense of bewilderment when she finds not one but three seemingly very different
definitions of ‘judgement’, none of which specifies a syntactic form, together
with a “Table of Judgement’ which specifies some syntactic forms (for example,
categorical, hypothetical, disjunctive, with various other subdivisions), without
an indication of how these forms relate to the three definitions. Lastly, there
are the examples of judgements that Kant uses in various works, whose logical
forms do not fit easily in the Table of Judgement. This looks unpromising
material, but we shall show that Kant’s logic is nevertheless coherent and

surprisingly relevant to modern concerns.
Let us begin with the three definitions of judgement:

A judgement is the representation of the unity of the consciousness of var-
ious representations, or the representation of their relation insofar as they
constitute a concept. [5, p. 597]

A judgement is nothing but the manner in which given cognitions are
brought to the objective unity of apperception. That is the aim of the
copula is in them: to distinguish the objective unity of given representa-
tions from the subjective [...] Only in this way does there arise from this
relation a judgement, i.e. a relation that is objectively valid [ . . . ﬂ (B141-2)

Judgements, when considered merely as the condition of the unification
of representations in a consciousness, are rules. (Prol. §23; see [8]])

Even for those unfamiliar with Kant’s technical vocabulary it will be obvious
that ‘unity’ plays a central role in all three definitions. These are different

3Where ‘objectively valid’ means ‘having relation to an object’, which is not the same as
‘true of the object’.
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ways of saying that the expressions occurring in a judgement must be bound
together so that they can be simultaneously present to consciousness. The first
definition posits unity simply as a requirement. The second says that unity in
a judgement is achieved if the judgement has ‘relation to an object’. The third
definition links unity to the meaning of a judgement. Just as an example: if
for a hypothetical judgement @ — 1 there exists a rule transforming a proof
of ¢ into a proof of \{, then that judgement is unified. If the hypothetical
is a truth functional material implication, then antecedent and consequent are
independent, hence this is not a unified representation. The presence of a notion
of unity of representation raises three questions: (i) what has this got to do
with formal logic?, (ii) is there a relation between the unity and the reference to
objects occurring in the second definition? and (iii) what is the relation between
unity and the concrete forms of judgement given in the Table of Judgement?

3.1. Objects, concepts and general logic

Categorical judgements are composed of concepts, and objects ‘fall under’
concepts in a sense hinted at in the following note:

Refl. 3042 Judgement is a cognition of the unity of given concepts: namely,
that B belongs with various other things x, y, z under the same concept A,
or also: that the manifold which is under B also belongs under A, likewise
that the concepts A and B can be represented through a concept B. [9]
p- 58]

It appears that both concepts and objects may fall under a given concept C. The
given concept is therefore fransitive in the sense that if (concept) M belongs
to C (by being a subconcept) and (object) a belongs under M, then a belongs
under C. Kant uses this semantics for concepts in his ‘principle for categorical
inferences of reason’:

What belongs to the mark of a thing also belongs to the thing itself. [5,
p. 617]

The next note supplies more information about these objects ‘in the logical
sense’ (so called because they make a cameo appearance in the section ‘The
logical employment of the understanding’ (A68-9/B93)).

Refl. 4634 We know any object only through predicates that we can say
or think of it. Prior to that, whatever representations are found in us are
to be counted only as materials for cognition but not as cognition. Hence

“Kant also uses the phrases ‘object a belongs under concept C” and ‘C belongs to a’.
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an object is only a something in general that we think through certain
predicates that constitute its concept. In every judgment, accordingly, there
are two predicates that we compare with one another, of which one, which
comprises the given cognition of the object, is the logical subject, and the
other, which is to be compared with the first, is called the logical predicate.
If I say: a body is divisible, this means the same as: Something x, which I
cognize under the predicates that together comprise the concept of a body,
I also think through the predicate of divisibility. [9, p. 149]

What this Reflexion tells us is that an object is generic (or most general) for
the ‘predicates that constitute its concept’, and that the quantifier ‘something

X’ ranges over such generic objects only.
The same idea is prominent in the section of CPR entitled ‘On the logical
use of the understanding in general’:

[T]he understanding can make no other use of concepts than that of judging
by means of them. Since no representation pertains the object immediately
except intuition alone, a concept is thus never immediately related to an
object, but is always related to some other representation of it (whether
that be an intuition or itself already a concept). Judgement is therefore the
mediate cognition of an object, hence the representation of a representation
of it. (A68/B93)

An object is therefore rather like what logicians call a type: i.e. a setﬂp (x) of
formulas containing at least the free variable X;E] free variables not identical to x
can be replaced by formal parameters representing objects, hence specified by a
type. As an example, consider the predicate ‘body’ and the type ’x is a massive
body which orbits star y’ — which can be used to defined the predicate ‘planet’,
by existential quantification over y or by replacing y by a formal parameter
(representing the Sun, say). Let T be the theory of the relevant concepts. If
M is a concept, we say that M(x) belongs to p(x) if T,p(x) = M(x). For
example, if T contains

Vx(A(x) A\ JyB(x,y) — M(x)),

then p(x) = {A(x), JyB(x,y)} belongs to M(x). It is technically convenient
to introduce suitable constants witnessing a type: if p(x) is a (consistent) type,

5Tn our context a finite set.

SRelations enter Kant’s logic especially in connection with the hypothetical judgement (see
section @]); furthermore, as Hodges observed in [4], traditional logic allowed relations in
syllogisms.
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let a,, be a new constant satisfying p(ap) These constants correspond to the
‘objects in general’ that we encountered in Reflexion 4634. One may then view
p(x) and a,, as determining the same object; and in this formal sense we have
that M belongs to a,.

The next question to consider is whether Kant’s theory of concepts puts a
bound on the complexity of concepts, i.e. the complexity of the types belonging
under the concept. The p(x) given in the previous paragraph can be viewed as
a single positive primitive formula:

Definition 1. A formula is positive primitive if it is constructed from atomic
formulas using only V, (infinite) \/, A\, 3, L.

Suppose M, P are concepts all of whose subconcepts can be defined using
positive primitive types (equivalently, formulas). The judgement ‘all M are P’
—or in the language of Reflexion 4634: “To everything x, to which M belongs,
also P belongs — may then be expressed as

AV vx(px) - q(x)),

PEM q€P

which is equivalent to

wx(\/ px) = \/ a(x)),

PEM qep
and this formula satisfies the definition of a geometric implication:

Definition 2. A formula is geometric or a geometric implication if it is of the
form Vx(0(x) — WP(X)), where 0 and P positive primitive.

As it turns out, Kant’s theories of concepts and of judgements contain the
resources to restrict the complexity of p(x) to positive primitive. The reason
for this is that the complexity of the relation ‘M (x) belongs to p(x)’ is at most
that of geometric implications. For the proof we must refer the reader to [1];
but a sketch will be given in section

Geometric logic — the inferential relationships between geometric formulas
— is therefore naturally suggested by Kant’s theory of concepts. We will see
that the logical form of Kant’s own examples of judgements (in so far as they
are ‘objectively valid’ (see section[3.2)) is that of geometric implications. As
a consequence, we can show by means of ‘dynamical proofs’ of geometric
implications that judgements can be viewed as rules:

"The constant ap implicitly depends on the parameters and free variables (x excluded)
occurring in p(x).
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Judgements, when considered merely as the condition of the unification of
representations in a consciousness, are rules. (Prol. §23; see [8])

3.2. Unity, objects and transcendental logic

The second characterisation of judgement maintains that if a judgement has
a certain kind of unity (the ‘objective unity of apperception’) then it relates
to an object — has ‘objective validity’ — and can express a truth or falsehood
of that object; it is ‘truth-apt’, in modern terminology. This is the domain of
transcendental logic, which Kant defines as follows:

[...] ascience of pure understanding and of the pure cognition of reason,
by means of which we think objects completely a priori. Such a science,
which would determine the origin, the domain, and the objective validity of
such cognitions, would have to be called transcendental logic since it has to
do merely with the laws of the understanding and reason, but solely insofar
as they are related to objects a priori and not, as in the case of general
logic, to empirical as well as pure cognitions of reason without distinction.
(A57/B81-2)

For Kant, perceiving objects about which judgements can be made is an instance
of what would now be called the binding problem: objects are always given as
a ‘manifold’ of parts and features, which have to be bound together through a
process of synthesis. What is very distinctive about Kant’s treatment here is
that the binding that binds expressions in judgement together at the same time
binds parts and features together with a view toward constructing an object
out of sensory material that relates to the judgement. Therefore the binding
process, necessary to bring separately perceived parts and features together, is
in the end a complex logical operation, described by transcendental logic:

Transcendental logic is the expansion of the elements of the pure cognition
of the understanding and the principles without which no object can be
thought at all (which is at the same time a logic of truth). For no cognition
can contradict it without at the same time losing all content, i.e. all relation
to any object, hence all truth. (A62-3/B87)

In the Critique, transcendental logic is not recognisably presented as a logic,
and it is commonly thought that it cannot be so presented. The article [1]
shows otherwise, mainly by focussing on the semantics of transcendental logic.
There is a vast difference between the notion of object as it occurs in first
order models, and in Kant’s logic. In the former, objects are mathematical
entities supplied by the metatheory, usually some version of set theory. These
objects have no internal structure, at least not for the purposes of the model
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theory. Kant’s notions of object, as they occur in the semantics furnished
by transcendental logic, are very different. For instance, there are ‘objects
of experience’, somehow constructed out of sensory material; transcendental
logic deals with a priori and completely general principles which govern the
construction of such objects, and relate judgements to objects so that we may
come to speak of true judgements.

3.3. The Table of Judgement (A70/B9S)

The three definitions describe judgement either in terms of certain cognitive
operations (‘unity of representations’) or in terms of a function that a judgement
has to perform (establishing ‘relation to an object’). There is no hint of a specific
form of judgement here. We find such hints in the Table of Judgement, but
there we do not find a comparison with definitions of judgement; e.g. the
Critique’s definition occurs only at (B141-2), way after the Table of Judgement
is introduced. This raises the problem of how we know that the forms proposed
in the Table satisfy the three definitions, and conversely, how for instance
the functional characterisation given at (B141-2) leads to specific forms of
judgement.

We now turn to the forms of judgement listed in the Table of Judgement,
and we discuss (some of) the inferences in which these judgements participate,
in part to emphasise the many differences between Kant’s logic and modern
logi(ﬂ We will also comment on the relation between the Table of Judgement
and the Table of Categories (A80/B106), although a full treatment is beyond

the scope of this paper.
We will begin our discussion with the title ‘Relation’ (A70/B95), where we
find

Relation
Categorical
Hypothetical
Disjunctive

3.3.1. Categorical judgements

These are judgements in subject-predicate form, combined with quantifiers and
optional negation, which can occur on the copula and on the concepts occur-

8See note 1.
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ring in the judgement. The Table of Judgement further specifies categorical
judgements with regard to Quantity and Quality:

Quantity

Universal

Particular

Singular

In the Table of Categories we find a corresponding list of ‘pure concepts of the
understanding’:

Of Quantity

Unity

Plurality

Totality

The precise correspondence between judgement forms and Categories is a
matter of controversy. Here we argue on logical grounds that Kant intended
a correspondence between the universal judgement and Unity, between the
particular judgement and Plurality, and between the singular judgement and
Totalityﬂ

As explained in section[3.1] the universal judgement ‘all M are P’, or as Kant
would have it “To everything x to which M belongs, also P belongs’, should
not be interpreted as the classical Vx(M(x) — P(x)), but as

wx(\/ px) = \/ a(x));

peEM qeP

and because the subject is maintained ‘assertorically’, not ‘problematically’,
we require that the types in M do not contain 1. These types are therefore
satisfiable — meaning that the (nonempty) collection of M’s is given as that
which the judgement is about, and the quantifier ‘To everything x’ is restricted
to M, not to some universe of discourse.

The association ‘universality — unity’ is motivated by the fact that in the
universal judgement ‘all M are P’ the predicate P makes no distinctions among
the things falling under the subject M.. Relative to P, M can hence be taken as
a unit.

The things falling under M form a plurality that is not a unity (with respect
to the predicate P) if there are true particular judgements ‘some M are P’ and
‘some M are not P’.

°See Frede and Kriiger [3] for a different correspondence linking the singular judgement
and Unity.
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In an unpublished note about the relation between universal and singular
judgement, Kant writes:

Refl. 3068 In the universal concept the sphere [=extension] of a concept is
entirely enclosed in the sphere of another concept; [...] in the singular
judgement, a concept that has no sphere at all is consequently merely
enclosed as a part under the sphere of another concept. Thus singular
judgements are to be valued equally with the universal ones, and conversely,
a universal judgement is to be considered a singular judgement with regard
to the sphere, much as if it were only one by itself. [9, p. 62]

Now consider (B111), where we read ‘Thus allness (totality) is nothing other
than plurality considered as a unity [...]

Taking a plurality M to be a totality involves considering M as a unity,
which means that a pair of judgements ‘some M are P’ and ‘some M are
not P’ is replaced by one of ‘all M are P’ and ‘all M are not P’. M is thus
totally determined with respect to the available predicates. Since M cannot be
divided using a predicate, this means that the concept M is used singularly, and
hence a universal judgement ‘all M are P’ can equivalently be regarded as the
singular judgement ‘M is P’, whence the correspondence between the singular
judgement and totality.

Quality
Affirmative
Negative
Infinite

There is no need for our present purposes to dwell extensively on this Category,
except to say that Kant makes a distinction between sentence negation as in
the negative particular judgement ‘some A are not B’ and predicate negation,
represented by the infinite judgement ‘some A are non-B’, which is affirmative
but requires infinitary logic for its formalisation: \/p~c_g (some A are C).
Hence Kant’s logic is not finitary. The difference with classical first order logic
will only increase as we go on.

3.3.2. Hypothetical judgements

It would be a mistake to identify Kant’s hypothetical judgements with a propo-
sitional conditional p — ¢, let alone material implication as defined by its truth
table: a material implication need not have any rule-like connection between
antecedent and consequent. Here is the definition in the Jédsche Logik:
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The matter of hypothetical judgements consists of two judgements that
are connected to each other as ground and consequence. One of these
judgements, which contains the ground, is the antecedent, the other, which
is related to it as consequence, is the consequent, and the representation
of this kind of connection of two judgements to one another for the unity
of consciousness is called the consequentia which constitutes the form of
hypothetical judgements. [5, p. 601, par. 591117]

This definition seems to say that the hypothetical is a propositional connective,
and some of Kant’s examples fall into this category:

If there is perfect justice, then obstinate evil will be punished. (A73/B98)

However, other examples exhibit a more complex structure, involving re-
lations, variables and binding. In the context of a discussion of the possible
temporal relations between cause and effect Kant writes in CPR:

If I consider a ball that lies on a stuffed pillow and makes a dent in it as a
cause, it is simultaneous with its effect. (A203/B246)

The hypothetical that can be distilled from this passage is:

If a ball lies on a stuffed pillow, it makes a dent in that pillow.

From this we see that (i) the antecedent and consequent need not be closed
judgements but may contain variables, and (ii) antecedent and consequent may
contain relations and existential quantifiers.

We now give an extended quote from the Prolegomena §29 [8] which pro-
vides another example of a hypothetical judgement whose logical structure
likewise exhibits the features listed in (i) and (ii) above:

It is, however, possible that in perception a rule of relation will be found,
which says this: that a certain appearance is constantly followed by another
(though not the reverse); and this is a case for me to use a hypothetical
judgement and, e.g., to say: If a body is illuminated by the sun for long
enough, it becomes warm. Here there is of course not yet the necessity
of connection, hence not yet the concept of cause. But I continue on, and
say: if the above proposition, which is merely a subjective connection of
perceptions, is to be a proposition of experience, then it must be regarded
as necessarily and universally valid. But a proposition of this sort would
be: The sun through its light is the cause of the warmth. The foregoing
empirical rule is now regarded as a law, and indeed as valid not merely of
appearances, but of them on behalf of a possible experience, which requires

""Here it is of interest to observe that in the same paragraph consequentia is also used to
refer to an inference.
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universally and therefore necessarily valid rules [...] the concept of a
cause indicates a condition that in no way attaches to things, but only to
experience, namely that experience can be an objectively valid cognition
of appearances and their sequence in time only insofar as the antecedent
appearance can be connected with the subsequent one according to the rule
of hypothetical judgements. [8, p. 105]

The logical form of the first hypothetical (a ‘judgement of perception’) is
something like:

If x is illuminated by y between time t and time s and s —t > d and the
temperature of x at t is v, then there exists aw > 0 such that the temperature
of xatsisv+wandv+w >c,

where d is the criterion value for ‘long enough’ and c a criterion value for
‘warm’. We find all the ingredients of polyadic logic here: relations and
quantifier alterations. The causal connection which transforms the judgement
into a ‘judgement of experience’ arises when the existential quantifiers are
replaced by explicitly definable functions.

We now move on to the logical properties of the hypothetical judgement.
Here it is of some importance to note that the term consequentia, characterising
the logical form of the hypothetical, is also used to describe the inferences from
the hypothetical:

The consequentia from the ground to the grounded, and from the negation
of the grounded to the negation of the ground, is valid. [5, p. 623]

Furthermore, the negation of a hypothetical is not deﬁnedE] This strongly
suggests that the hypothetical judgement is really a license for inferences.
Indeed, in the Jésche Logik Kant characterises inferences such as modus ponens
and modus tollens as immediate inferences and as such needing only one
premise, not two premises [5, p. 623]. Modern proof systems conceive of
modus ponens as a two-premise inference, p implies q and p, therefore q.
But Kant does not think of it in this way. He thinks of it as an inference
with premise p, conclusion ¢, which is governed by a license for inference.
This strongly suggests that Kant does not have a single entailment relation,
as in modern logiCPZI but only local entailment relations defined by specific
inferences. We end this discussion of the hypothetical judgement with a further

""Note that the negation of a categorical judgement is defined, although its properties do
seem to be weaker than classical negation: ‘some A are not B’ is the negation of ‘All A are
B’, but it is a moot point whether the negative particular judgement has existential import. Its
infinitive counterpart does have existential import.

12Gee Hodges [4] for relevant discussion.
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twist: its logical properties change when it is considered in a causal context,
i.e. in transcendental logic:

When the cause has been posited, the effect is posited «posita causa ponitur
effectus> already flows from the above. But when the cause has been
cancelled, the effect is cancelled <sublata causa tollitur effectus> is just as
certain; when the effect has been cancelled, the cause is cancelled <sublato
effectu tollitur causa> is not certain, but rather the causality of the cause is
cancelled <tollitur causalitas causae>. 6, p.336-7]

3.3.3. Disjunctive judgements

These are again not what one would think, judgements of the form p V' q. The
Jésche Logik provides the following definition:

A judgement is disjunctive if the parts of the sphere of a given concept
determine one another in the whole or toward a whole as complements
[...] [A]ll disjunctive judgements represent various judgements as in
the community of a sphere [...] [O]ne member determines every other
here only insofar as they stand together in community as parts of a whole
sphere of cognition, outside of which, in a certain relation, nothing may be
thought.(Jédsche Logik, §27, 28) [5, pp. 602-3]

As examples Kant provides:

Every triangle is either right-angled or not right-angled.
A learned man is learned either historically, or in matters of reason.

Thus the logical form is something like Vx(C(x) — A(x) V B(x)), where C
represents the whole, A, B its parts; here it is not immediately clear whether
the parts can be taken to exist outside the context of the whole. But actually the
situation is much more complicated. The Jdsche Logik equivocates between
concepts and judgements making up the whole, and this is intentional, as we
read in the Vienna Logic:

The disjunctive judgment contains the relation of different judgment insofar
as they are equal, as membra dividentia, to the sphaera of a cognitio divisa.
E.g., All triangles, as to their angles, are either right-angled or acute or
obtuse. I represent the different members as they are opposed to one
another and as, taken together, they constitute the whole sphaera of the
cognitio divisa. This is in fact nothing other than a logical division, only in
the division there does not need to be a conceptus divisus; instead, it can be
a cognitio divisa. E.g., If this is not the best world, then God was not able
or did not want to create a better one. This is the division of the sphaera of
the cognition that is given to me. [5, p. 374-5]
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So it is not just concepts that can be divided in the familiar way, also cognitions
(Erkenntnisse), including judgements, can be so divided. What this means for
the complexity of Kant’s logic can be seen if we look at the expanded example
in the Dohna-Wundlacken Logic:

If this world is not the best, then God either was unfamiliar with a better
[one] or did not wish to create it or could not create [it], etc. Together these
constitute the whole sphaera. [5, p. 498]

It will be instructive to formalise this example. Let wy be the actual world,
G a constant denoting God, let B(wy, w) represent ‘w is a better world than
wy, and let UA(G,w), Uw(G,w), Uc(G,w) represent: ‘God was unfamiliar
with w’, ‘God was unwilling to create w’ and ‘God was unable to create w’,
respectively. We then get the combined hypothetical-disjunctive judgement:

IwB(wp, w) — Yw(B(wo,w) — (UAG,w) V Uw(G,w)V Uc(G,w))).

It is to be noted that this hypothetical-disjunctive judgement consists entirely
of relations, and that the division is formulated in terms of singular judgements
containing a parameter (‘God’) and a variable. As in the case of the hypothetical
judgement, the negation for a disjunctive judgement is not defined, which
suggests that it is actually a license for inferences, using quantified forms of the
disjunctive syllogism, for example:

1. Starting from the premise ‘God is familiar with a better world’ (which is
taken to imply Fw(B(wp, w) /A ~Uf(G, w))) now introduces the positive
primitive formula Iw(B(wgy, w) V (Uw(G,w) V Ua(G,w))).

2. Similarly the premise ‘God is familiar with all better worlds’ yields the
formula Yw(B(wy, w) — (Uw(G,w) V Ua(G,w))).

Kant evidently believes these inferences are perfectly proper cases of the dis-
junctive syllogism, but the present-day reader may well ask whether his general
logic has the resources to break down these inferences in smaller steps. But
if the hypothetical and the disjunctive judgement are licenses for inferences,
this means that they can be taken as given as far as general logic is concerned
(much like a Prolog program is taken as given and is used only to derive atomic
facts). This somewhat eases the burden on general logic, in the sense that it

need not have the resources to prove hypothetical and disjunctive judgements.
As we did for the hypothetical judgement, we will also look at the intended
transcendental use of the disjunctive judgement:
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The same procedure of the understanding when it represents to itself the
sphere of a divided concept, it also observes in thinking of a thing as
divisible; and just as in the first case the members of the division exclude
each other, and yet are connected in one sphere, so in the latter case the
understanding represents to itself the parts of the latter as being such that
existence pertains to each of them (as substances) exclusively of the others,
even while they are combined together in one whole. (B113)

The disjunctive judgement is said to involve the cognitive act of dividing a thing,
while keeping the resulting parts simultaneously active in one representation.
Here we are concerned with the logical principles that Kant’s disjunction sat-
isfies. Kant gives as inferences valid for a disjunctive judgement C — AV B,
the two halves of the so-called disjunctive syllogism:

C and —A implies B
C and A implies —B.

These inference rules are considerably weaker than those that are valid for
the classical or intuitionistic disjunction, and remind one of the multiplicative
disjunction of linear logic. Can one impose stronger inference rules on the
disjunction? That is doubtful. For example, the standard right disjunction rule
in sequent calculus:

= AA
'=AVB,A
is invalid for Kant, because it allows the addition of an arbitrary B to A, without
the guarantee that A, B constitute a whole.

An additional consideration is the connection with divisibility; here the parts
must be present simultaneously, which is what the rule just given expresses.
This formulation lends some credibility to Kant’s association of the disjunctive
judgement with the category of simultaneity in the third Analogy of Experience.
However, the new formulation raises the issue of what one should say if A and
B are identical. Kant makes an important distinction between two kinds of
identity in ‘On the amphiboly of concepts of reflection’:

If an object is presented to us several times, but always with the same inner
determinations, then it is always exactly the same if it counts as an object
of pure understanding, not many but only one thing; but if it is appearance,
then [...] however identical everything may be in regard to [concepts],
the difference of the places of these appearances at the same time is still an
adequate ground for the numerical difference of the object (of the senses)
itself. Thus, in the case of two drops of water one can completely abstract
from all inner difference (of quality and quantity), and it is enough that they
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be intuited in different places at the same time for them to be held to be
numerically different. (A263-4/B319-20)

Suppose one has a ‘whole’ that is divided into spatially distinct parts that have
‘the same inner determinations’. This hypothetical situation suggests that a
logic for Kant’s disjunction does not include a rule for (right) contraction:

= AAA
= AA
But in that case also the standard rule for left disjunction introduction:

LA=A LB=A
NAVB=A
must be dropped because otherwise right contraction becomes derivable. In-
stead, one would have a rule like:

NA=A LB =4
LAVB= A A

3.4. Logical form of judgements

Looking back at our examples we see that, with one exception (the negative
particular judgement, which, as discussed in [1] was meant by Kant to be purely
negative), they are all geometric judgements. Geometric logic, i.e. the logic of
geometric formulas, plays an important role in several branches of mathematics,
Euclidean geometry being one but not the only example. More germane to our
purposes is a result in [1], which shows that all objectively valid judgements in
the sense of (B141-2) must be finite conjunctions of geometric implications.

3.5. ‘Functions of unity in judgements’: dynamical proofs

In a dynamical proof one takes a geometric theory{]z] as defining a consequence
relation holding between two sets of facts. An example, taken from Coquand
[2]], illustrates the idea. The theory is

1. P(x) A U(x) — Q(x) V FyR(x,y)
2. P(x) AN Q(x) — L
3We assume the geometric implications in the theory have antecedents consisting of con-

junctions of atomic formulas only.
“We omit the universal quantifiers.
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3. P(x) N\ R(x,y) — S(x)
4. P(x) N\ T(x) — U(x)
5. U(x) A S(x) — V(x)V Q(x)

And here is an example of a derivation of V(ay) from P(ag), T(ap):

P(ao), T(ap)
(4) U(ao)
(1)

Q(ao) R(ap, ar)
(2) L (3) S(aop)
(5)

N

V(ap) Q(ao)
(2) L

We give some comments on the derivation. The dynamical proof just given
can also be taken to prove Vx(P(x) AT(x) — V(x)), where the proof is the link
between antecedent and consequent, hence a ‘function of unity’. Furthermore,
the geometric theory defines the consequence relation, hence the geometric
implications occurring in it can be seen as inference rules. Disjunctions lead
to branching of the tree, as we see in (1) and (5). The existential quantifier in
formula (1) introduces a new term in the proof, here a;, which appears in the
right branch of (1). This constant is the ‘object in general’ of Reflexion 4634.
Lastly, a fact is derivable if it appears on every branch not marked by L, which
leaves V(ap). If X is a collection of facts whose terms are collected in I, F a
fact with terms in I, and T a geometric theory, then there exists a dynamical
proof of F from X if and only if T, X F F in intuitionistic logic.

Itis clear how a dynamical proof of a geometric implication from a geometric
theory proceeds: if T is the geometric theory and Vx(t(X) — 0(X)) the
geometric implication (T is a conjunction of atomic formulas, and for simplicity
take 0 an existentially quantified conjunction 0’ of atomic formulas; we interpret
0’ as a set), choose new terms not occurring in either T or Vx(t(x) — 0(X)),
plug these terms into T and construct a dynamical proof tree with the sets 6 at
the leaves. There may occur terms in 0’ not in T; these have to be quantified
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existentially. Introduce any other existential quantifiers on 0’ as required by
0. The result is an intuitionistic derivation of Vx(t(X) — 6(k)) from T.
Conversely, if there is an intuitionistic derivation of Vx(t(x) — 0(Xx)) from T,
then there exists a dynamical proof in the sense just sketched.

Dynamical proofs as a semantics for geometric implications can explain
Kant’s characterisation of judgements as rules, as well as ‘a unity of the con-
sciousness of various representations’; after all, the diagram represents ‘unity’
as a single spatial representation. What remains to be done is to situate a
judgement’s ‘objective validity’ relative to its other properties.

4. Completeness of the Table of Judgement

In [1] it is argued that (i) Kant’s implied semantics for logic is radically differ-
ent from that of classical first order logic, (ii) the implied semantics, centered
around Kant’s three different notions of object, can be given a precise mathe-
matical expression, thus leading to a formalised transcendental logic, and (iii)
on the proposed semantics, Kant’s formal logic turns out to be geometric logic.

It is not appropriate to repeat the technical exposition here, so we will follow

a different strategy starting from Kant’s most fundamental characterisation of
judgement:

A judgement is nothing but the manner in which given cognitions are
brought to the objective unity of apperception. (B141)

A judgement is the act of binding together mental representations; this is what
the term ‘unity’ refers to. The aim of judgement is indicated by means of the
word ‘objective’, which is Kant’s terminology for ‘having relation to an object’.
But for Kant, objects are not found in experience, but they are constructed
(‘synthesised’) from sensory matter under the guidance of the Categories,
which are defined as ‘concepts of an object in general, by means of which the
intuition of an object is regarded as determined in respect of one of the logical
functions of judgement’ (B128). It is here that judgement plays an all-important
role, since Kant’s idea is that objects are synthesised through the act of making
judgements about them.

Technically, these acts of synthesis are modelled as a kind of possible worlds
structure (an ‘inverse system’), where the possible worlds are finite first order
models whose elements are partially synthesised objects, except for the unique
top-world (the ‘inverse limit’) which represents (the idea of) fully synthesised
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objects. Bringing a (formal) judgement ¢ to the ‘objective unity of apper-
ception’ is now characterised by the property: for any such possible worlds
structure, if @ is true on all worlds, then @ is also true on the top-world. That is
to say, if @ is true for all stages of synthesis of an object, then ¢ is true of some
fully synthesised object. Kant calls judgements ¢ satisfying this conditional
property ‘objectively valid.” It turns out that the objectively valid formulas are
exactly the geometric formulas. It follows that no judgement whose logical
form is more complex than that allowed by the Table of Judgement can be
objectively valid, i.e. this Table is complete.

It is of some interest that the key idea in the proof sheds light on Kant’s

logical reinterpretation of the Categories of Quantity as constraints on concepts
(B113-6):

In every cognition of an object there is, namely, unity of the concept,
which one can call qualitative unity insofar as by that only the unity
of the comprehension of the manifold of cognition is thought, as, say,
the unity of the theme in a play, a speech, or a fable. Second, truth in
respect of the consequences. The more true consequences from a given
concept, the more indication of its objective reality. One could call this the
qualitative plurality of the marks that belong to a concept as a common
ground . .. Third, finally, perfection, which consists in plurality conversely
being traced back to the unity of the concept, and agreeing completely with
this one and no other one, which one can call qualitative completeness
(totality).

The phrase ‘unity of the theme in a play’ is probably a reference to Aristotle’s
‘unity of action’ in tragedy, where

the structural union of the parts [must be] such that, if any one of them
is displaced or removed, the whole will be disjointed and disturbed. For
a thing whose presence or absence makes no visible difference, is not an
organic part of the whole (Poetics, VIII).

Hence we read ‘qualitative unity’ as the requirement that the concept under
consideration is integrated with other concepts by means of a theory, and is
invariant under structure-preserving mappings (homomorphisms). The latter
requirement forces all subconcepts of the given concept to have the same logical
complexity. We are now in a position to spell out the logical meaning of B113-6
in formal terms.

Let C be a concept which satisfies ‘qualitative unity’ and let T be the first
order theory witnessing ‘qualitative unity’. Define a ‘qualitative plurality’ X
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by
T(x)={06(x) | T EWx(C(x) — 6(x)), 0 pos. prim.}.

Because we may have, for each 0, ‘some 0 aren’t C’, for all we know X could
be a proper plurality. But ‘qualitative completeness’ now becomes provable:

L(x), Tk Cx),
hence by compactness there is positive primitive T(x) such that
T E vx(t(x) & C(x)).

It follows that, as announced in section 3.1, universal judgements ‘all M are
P’ can be expressed as geometric implications, provided the concepts M, P
satisfy ‘qualitative unity’.

In summary, we have shown that after formalisation, Kant’s general logic
turns out to be at least as rich as geometric logic, while it coincides with it
when taking into account the semantics of judgements dictated by ‘transcen-
dental logic’E] This latter result is but one example of interesting metalogical
theorems that may be proved about Kant’s logic; B113-6, formally reinterpreted
as a theorem about definability of concepts, is another.
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Abstract: We discuss a feature of the natural language of mathematics — the implicit
dynamic introduction of functions — that has, to our knowledge, not been captured in
any formal system so far. If this feature is used without limitations, it yields a paradox
analogous to Russell’s paradox. Hence any formalism capturing it has to impose some
limitations on it. We sketch two formalisms, both extensions of Dynamic Predicate
Logic, that innovatively do capture this feature, and that differ only in the limitations
they impose onto it. One of these systems is based on Ackermann-like Function
Theory, a novel foundational theory of functions that is inspired by Ackermann Set
Theory and that interprets ZFC.
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1. Dynamic predicate logic

Dynamic predicate logic (DPL) [[7] is a formalism whose syntax is identical to
that of standard first-order predicate logic (PL), but whose semantics is defined
in such a way that the dynamic nature of natural language quantification is
captured in the formalism:

1. If a farmer owns a donkey, he beats it.
2. PL:Vx Yy (farmer(z) A donkey(y) A owns(x,y) — beats(z,y)).
3. DPL: 3z (farmer(x) A Jy (donkey(y) A owns(z,y))) — beats(z,y).

In PL, E] is not a sentence, since the rightmost occurrences of x and y are free.
In DPL, a variable may be bound by a quantifier even if it is outside its scope.

© The Author(s) and College Publications 2017
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The semantics is defined in such a way that 3 is equivalent to[2] So in DPL, 3
captures the meaning of [T| while being more faithful to its syntax than 2.

1.1. DPL semantics

We present DPL semantics in a way slightly different but logically equivalent
to its definition by Groenendijk and Stokhof in [7]. Structures and assignments
are defined as for PL: A structure S specifies a domain | S| and an interpretation
a® for every constant, function or relation symbol a in the language. An
S-assignment is a function from variables to |S|. Let Gg denote the set of
S-assignments. Given two assignments g, h, we define g[z]h to mean that g
differs from h at most in what it assigns to the variable . Given a DPL term
t, we recursively define

g(t) if ¢ is a variable,
[t]% =< 9 if ¢ is a constant symbol,
()%, ... [ta)) if tis of the form f(t1,. .., t,).

Groenendijk and Stokhof [7] define an interpretation function [[-] s from DPL
formulae to subsets of Gg x Gg. We instead recursively define for every
g € G an interpretation function [-] from DPL formulae to subsets of G gﬂ

LTS = {g}-

2. [tr = t2]% := {h|h = g and [t:]§ = [t2]¢} ]

3. [R(t1,...,t2)]% == {hlh = g and ([t:]%, ..., [t2]%) € RS}.
4. [=¢]% := {h|h = g and there is no k € [p]2}.

5. [ A]% = {h|thereisa k s.t. k € [¢]% and h € []%}.

6. [ = ¢]% := {h|h = gand for all k s.t. k € ], thereisa j s.t. j € [¢]%}.

7. Bz )% := {h|there is a k s.t. k[z]g and h € [¢]%}.

¢ V1) and Vx ¢ are defined to be a shorthand for =(—p A —¢)) and 3x T — ¢
respectively.

IThis can be viewed as a different currying of the uncurried version of Groenendijk and

Stokhof’s interpretation function.
2The condition h = g in cases 2, 3, 4 and 6 implies that the defined set is either () or {g}.
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2. Implicit dynamic introduction of function symbols

Functions are often dynamically introduced in an implicit way in mathematical
texts. For example, [[10] introduces the additive inverse function on the reals
as follows:

(a) For each a there is a real number —a such that a + (—a) = 0. [10, p. 1]

Here the natural language quantification “there is a real number —a” locally
(i.e. inside the scope of “For each a”) introduces a new real number to the
discourse. But since the choice of this real number depends on a and we are
universally quantifying over a, it globally (i.e. outside the scope of “For each
a”) introduces a function “—"" to the discourse.

The most common form of implicitly introduced functions are functions
whose argument is written as a subscript, as in the following example:

(b) Since f is continuous at ¢, there is an open interval I; containing ¢ such
that [f(x) — f(t)| < lifz € I; N a,b]. [10, p. 62]

If one wants to later explicitly call the implicitly introduced function a function,
the standard notation with a bracketed argument is preferred:

(c) Suppose that, for each vertex v of K, there is a vertex g(v) of L such that
f(stg(v)) Cstr(g(v)). Then g is a simplicial map V (K) — V(L), and
9] = .18, p. 19]

When no uniqueness claims are made about the object locally introduced
to the discourse, implicit function introduction presupposes the existence of a
choice function, i.e. presupposes the Axiom of Choice. We hypothesise that
the naturalness of such implicit function introduction in mathematical texts
contributes to the wide-spread feeling that the Axiom of Choice must be true.

Implicitly introduced functions generally have a restricted domain and are
not defined on the whole universe of the discourse. In the example (c), g
is only defined on vertices of K and not on vertices of L. Implicit function
introduction can also be used to introduce multi-argument functions, but for
the sake of simplicity and brevity, we restrict ourselves to unary functions in
this paper.

If the implicit introduction of functions is allowed without limitations, one
can derive a contradiction:
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(d) For every function f, there is a natural number g( f) such that

(f):{o if f € dom(f) and f(f) # 0,
1 if f ¢ dom(f)or f(f) =0.

Then g is defined on every function, i.e. g(g) is defined. But from the
definition of g, g(g) = 0iff g(g) # 0.

This contradiction is due to the unrestricted function comprehension that is
implicitly assumed when allowing implicit introductions of functions without
limitations. Unrestricted function comprehension could be formalised as an
axiom schema as follows:

Axiom Schema 1 (Unrestricted function comprehension). For every formula
o(z,y), the following is an axiom: Vz Iy p(z,y) — If Vo o(z, f(x)).

The inconsistency of unrestricted function comprehension is analogous to
the inconsistency of unrestricted set comprehension, i.e. Russell’s paradox.

Russell’s paradox led to the abandonment of unrestricted comprehension in
set theory. Two radically different approaches have been undertaken for re-
stricting set comprehension: Russell himself restricted it through his Ramified
Theory of Types, which was later simplified to Simple Type Theory (STT),
mainly known via Church’s formalisation in his simply typed lambda calcu-
lus [2]. On the other hand, the risk of paradoxes like Russell’s paradox also
contributed to the development of ZFC (Zermelo-Fraenkel set theory with the
Axiom of Choice), which allows for a much richer set theoretic universe than
the universe of simply typed sets. Since all the axioms of ZFC apart from the
Axiom of Extensionality, the Axiom of Foundation and the Axiom of Choice
are special cases of comprehension, one can view ZFC as an alternative way to
restrict set comprehension.

Similarly, the above paradox must lead to the abandonment of unrestricted
function comprehension. The type-theoretic approach is easily adapted to func-
tions, so we will first sketch the system that formalises this approach, Typed
Higher-Order Dynamic Predicate Logic. For an untyped approach, there is no
clear way to transfer the limitations that ZFC puts onto set comprehension to
the case of function comprehension. However, there is an axiomatization of set
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theory (with classes) called Ackermann set theory that is a conservative exten-
sion of ZFC. It turns out that the limitations that Ackermann set theory poses
on set comprehension can be transferred to the case of function comprehension,
and hence to the case of implicit dynamic function introduction.

The need to deal with implicit function introduction arose for us in the
context of the Naproche project, a project aiming at automatic formalisation
of natural language mathematics [3,/5,|6]. It has been implemented in the
Naproche system using type restrictions as in Typed Higher-Order Dynamic
Predicate Logic, and we plan to implement it using the less strict restrictions
of the untyped Higher-Order Dynamic Predicate Logic in a future version of
the system.

3. Typed higher-order dynamic predicate logic

In this section, we extend DPL to a system called Typed Higher-Order Dynamic
Predicate Logic (THODPL), which formalises implicit dynamic function in-
troduction, and also allows for explicit quantification over functions. THODPL
has variables typed by the types of STT. In the below examples we use x and y
as variables of the basic type ¢, and f as a variable of the function type ¢ — 1.
A complex term is built by well-typed application of a function-type variable
to an already built term, e.g. f(z) or f(f(x)).

The distinctive feature of THODPL syntax is that it allows not only variables
but any well-formed terms to come after quantifiers. So (I is a well-formed
formula:

Vo 3f(z) R(z, f(z)), (1)
Va Jy R(z,vy), 2)
3f (Vz R(z, f(z))). 3)

The semantics of THODPL is to be defined in such a way that (1) has the
same truth conditions as @) But unlike (2), (1) dynamically introduces the
function symbol f to the context, and hence turns out to be equivalent to (3).

We now sketch how these desired properties of the semantics can be achieved.
In THODPL semantics, an assignment assigns elements of | S| to variables of
type i, functions from |S| to |S| to variables of type i — i etc. Additionally,
an assignment can also assign an object (or function) to a complex term. For
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example, any assignment in the interpretation of 3f(z) R(x, f(z)) has to
assign some object to f(x). The definition of g[z|h can now naturally be
extended to a definition of g[t]h for terms ¢. The definition of [t has to be
adapted in the natural way to account for function variables.

Just as in the case of DPL semantics, we recursively define an interpretation
[-]% from DPL formulae to subsets of Gg (the cases 1-5 of the recursive
definition are as in Section [I.T)):

6. [ — )% := {h|h differs from g in at most some function variables
f1,..., fn (where this choice of function variables is maximal), and there
is a variable x such that for all k € []%, there is an assignment j € [v]%
such that j(fi(z)) = h(fi)(k(z)) for 1 < i < n, and if n > 0 then
Klzlg}.

7. [Bt @)% == {h|there is a k s.t. k[t]g and h € [p]&}.

In order to make case[6|of the definition more comprehensible, let us consider
its role in determining the semantics of (1), i.e. of 3z T — Jf(x) R(z, f(x)):
First note that [3f(z) R(z, f(x))]% is the set of assignments j satisfying
R(z, f(z)) (i.e. for which [R(z, f(z)) zq is non-empty) such that j[f(z)]k.
Furthermore note that [Jz T]% is the set of assignments & such that k[z]g. So
by case 6 withn = 1,

[3z T — 3f(z) R(z, f(z))]% = {h|h[f]g and there is a variable z such that
for all k£ such that k[x]g, there is an as-
signment j satisfying R(z, f(x)) such that
jlf (@)]k and j(f(x)) = h(f)(k(z)), and
klz]g}

= {h|h[f]g and for all k such that k[z]g, there is
an assignment j satisfying R(x, f(x)) such
that j[f )]k and j(f(z)) = h(f)(k(z))}

= {h|h[f]g and for all k such that k[x]h, k
satisfies R(x, f(z))}

= [3f (Y R(z, f(2)))]%-
The type restrictions THODPL imposes may be too strict for some applica-

tions: Mathematicians sometimes do make use of functions that do not fit into
the corset of strict typing, e.g. a function defined on both real numbers and real
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functions. To overcome this restriction, we will introduce an untyped variant
HODPL in Section[6] But for this, we require some foundational preliminaries.

4. Ackermann set theory

Ackermann set theory [|1] postulates not only sets, but also proper classes which
are not sets[’] The sets are distinguished from the proper classes by a unary
predicate M (from the German word ‘“Menge” for “set”).

Ackermann presented a pure version of his theory without urelements, and
a separate version with urelements, which we will present here. The language
of Ackermann set theory contains three predicates: A binary predicate €, a
unary predicate M and a unary predicate U for urelements. We introduce L(z)
(“x is limited”) as an abbreviation for M(z) V U(z). The idea is that sets and
urelements are objects of limited size, and are distinguished from the more
problematic classes of unlimited size.

The axioms of Ackermann set theory with urelements are as follows:

* Extensionality axiom: Yz ¥y (Vz (z € x <> z € y) = x = y).

* Class comprehension axiom schema: Given a formula F'(y) (possibly with
parameterg”) that does not have x among its free variables, the following

Vy (F(y) = L(y)) = 3x Yy (y € = © F(y)).

* Set comprehension axiom schema: Given a formula F'(y) (possibly with
parameters that are limited®) that does not have 2 among its free variables
and does not contain the symbol M, the following is an axiom:

Vy (F(y) = L(y)) — 3z (M(2) AVy (y € 2 < F(y)))-

» Elements and subsets of sets are limited:
VeVy M(y) AN(x eyVVz(z €z —2z€y)) — L(y)).

3Note, however, that unlike the more well-known class theory NBG, Ackermann set theory

also allows for proper classes that contain proper classes.
4This means that F' may actually be of the form F'(Z,y), and that these parameters are

universally quantified in the axiom:

vz (Vy (F(z,y) = M(y)) = Jz Vy (y € = & F(2,9))).
SFormally, with the parameters made explicit, the set comprehension axiom schema reads

as follows:
V21, ..oy 2n (L(z1) A AL(zn) = (Vy (F(21,. .., 2n,y) = L(y)) = Iz M(z)AVy (y €
< F(z,. .0, 20,9)))))-
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So unlimited set comprehension is replaced by two separate comprehension
schemata, one for class comprehension and one for set comprehension. In
both cases, the comprehension is restricted by the constraint that only limited
objects satisfy the property that we are applying comprehension to. But for
set comprehension, we have the additional constraint that the property may not
be defined using the setness predicate or using a proper class as parameter.
Ackermann justified this approach by appeal to a definition of “set” from
Cantor’s work [1].

If an Axiom of Foundation for sets is added, Ackermann set theory turns
out to be — in what it says about sets — precisely equivalent to ZF [9]]. But this
equivalence is not a triviality: It is especially hard to establish Replacement for
the sets of Ackermann set theory.

5. Ackermann-like function theory

Now we transfer the ideas of a comprehension limited in this way from set
comprehension to function comprehension. For this a dichotomy similar to that
between sets and classes has to be imposed on functions. We propose the terms
function and map respectively for this dichotomy, and call the theory resulting
from these limitations on function comprehension Ackermann-like Function
Theory (AFT). AFT can be shown to be equiconsistent with Ackermann set
theory and hence with ZFC (see Theorem [] below).
The language of Ackermann-like function theory (L arr) contains

* a unary predicate F for functions,

* aunary predicate U for urelements,

* a constant symbol u for undefinedness, and

* a binary function symbol a for function application.

Instead of a(f,t) we usually simply write f(¢). We write L(z) instead of
U(z) V F(z). The undefinedness constant u is needed for formalising the idea
that a function is only defined for certain values and undefined for others. In
this language, the unrestricted function comprehension schema would be as
follows:
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Axiom Schema 2 (Unrestricted function comprehension in Lapr). Given a
variable z and formulae P(z) and R(z, x) (possibly with parameters), the fol-
lowing is an axiom: Vz (P(z) — 3z R(z,z)) — 3f (-U(f) AVz ((P(2) —
R(z, f(2)) A (=P (2) = [(2) = u))).

Analogously to the case of Ackermann set theory, AFT has separate com-
prehension schemata for maps and functions. The restriction that is imposed
on both schemata now is Vz Vz (R(z,z) — L(z) A L(x)). In the function
comprehension schema, in which F( f) appears among the conclusions we may
draw about f, the additional restriction is that the formula R(z,x) may not
contain the symbol F' and may not have unlimited objects as parameters.

Additionally to these comprehension schemata, AFT has

* a function extensionality axiom,

* an axiom stating that any value a function takes and any value a function
is defined at is limited, and

* an axiom stating that submaps of functions are functions.

In AFT one can interpret Ackermann set theory with Foundation, and hence
ZFC (see Theorems|[I|and[3|below). Since the map and function comprehension
schemata presuppose the existence of choice maps and choice functions, the
Axiom of Choice naturally comes out true in these interpretations.

We now state the main theorems about AFT. Their proofs can be found in
the author’s PhD thesis [5, pp. 58-62].

Theorem 1 (Theorem 4.2.7 in [5, p. 58]). AFT interprets Ackerman set theory
with urelements and the Axiom of Choice.

Theorem 2 (Theorem 4.2.20 in [5, p. 61]). Ackermann set theory with the
Axiom of Foundation and the Axiom of Global Choice interprets AFT.

Theorem 3 (Theorem 4.2.8 in [5, p. 59]). AFT interprets ZFC.
Theorem 4 (Corollary in [5, p. 62]). AFT is equiconsistent with ZFC.

6. Higher-order dynamic predicate logic

Now we are ready to sketch the untyped Higher-Order Dynamic Predicate
Logic (HODPL). The restriction we impose on implicit function introduction
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are those imposed by AFT. AFT gives us untyped maps, which always have a
restricted domain. So instead of using types to syntactically restrict the possible
arguments for a given function term, we implement a semantic restriction on
function application by integrating a formal account of presuppositions into
the HODPL[% HODPL syntax thus allows for any term to be applied to any
number of arguments to form a new term.

Besides the binary “=", HODPL has two unary logical relation symbols,
U for urelements and F for functions. HODPL syntax does not depend on a
signature, as we do not allow for constant, function and relation symbols other
than “=", U and F. These can be mimicked by variables that respectively
denote a non-function, denote a normal function or denote a function that only
takes two predesignated urelements (“booleans”) as values.

The domain of a structure always has to be a model of AFT. The possibility
of presupposition failure is implemented in HODPL semantics by making the
interpretation function partial rather than total. For conveniently talking about
partial functions, we use the notation def(f(z)) to abbreviate that f is defined
on .

We define the partial interpretation function [-]4 € Gg x G by specifying
its domain and its values trough a simultaneous recursion (the cases 3-8 of the
second part are as in THODPL):

* Domain of [-]%:

1. def([U(H]L) if 15 # uS.

2. def([F(O]S) iff [ # u.

3. def([T]3).

4. def([ts = t2]2) iff [t1]% # u” and [ta]% # u®.

5. def([~¢]%) iff def([£]%).

6. def([¢ A ¢]%) iff def([]%) and for all h € [¢]Z, def([1]%).
7. def([¢ — ¢]%) iff def([]%) and for all h € [¢]Z, def([]%).
8. def([3t ¢]%) iff for all h s.t. h[t]g, def([p]2).

* Values of [-]%:

1. [U@#)]% = {h|g = hand [t]] € U}.
2. [F(t)]% = {h|g = hand [t]] € F5}.

6See [4]l for an introduction to presuppositions in mathematical texts.
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One can define a sound proof system for HODPL that can prove everything
provable in AFT: In the author’s PhD thesis, a proof system for an extension of
HODPL is defined [5, pp. 108—113] and proven to be sound [5, pp. 147, 148]
and complete [5, pp. 156-176]. The details of this proof system are beyond the
scope of this paper.

7. Conclusion

We have studied a feature of the natural language of mathematics that has pre-
viously not been studied by other logicians or linguists, the implicit dynamic
function introduction, exemplified by constructs of the form “for every «x there
is an f(x) such that ...”. If this feature is used without limitations, it yields
a paradox analogous to Russell’s paradox. Hence any formalism capturing
it has to impose some limitations on it. We have sketched two higher-order
extensions of Dynamic Predicate Logic, Typed Higher-Order Dynamic Predi-
cate Logic (THODPL) and Higher-Order Dynamic Predicate Logic (HODPL),
which capture this feature, and which differ only in the limitations they impose
onto it. HODPL is based on Ackermann-like Function Theory, a novel founda-
tional theory of functions that is inspired by Ackermann Set Theory and that
interprets ZFC.
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Abstract: The object of this paper is to present and thoroughly study a new logic,
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Introduction

One may point out, in modern mathematics, many mathematical, logical and
philosophical oppositions to Cantor’s transfinite “paradise”. As is well known,
Kronecker, Poincaré, Brouwer, Weyl, Feferman, and some others are partic-
ularly reluctant to accept Cantor’s conception of the continuum (“The actual
infinite is not required for the mathematics of the physical world”, Feferman
says).

Surprisingly enough, topology has never really been touched by the criti-
cisms on set theory and actual infinity, although it incorporates many problem-
atic notions of set theory. For instance, unless one chooses to consider non-77
topological spaces (i.e. spaces of little mathematical significance and of prac-
tically no use in applied domains), boundaries are lines of Lebesgue-measure
zero. Next, contrary to what intuition suggests, the operators of interior and
closure are idempotent. Moreover, the concept of neighbourhood, which is
supposed to model the notion of proximity or nearness, is somehow transitive.
It is not difficult to prove that all these counterintuitive and mathematically
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hard to accept situations are immediate consequences of the actual infinity,
particularly of the atomic nature of the continuum.

The various attempts to generalize point-set topology take place in the course
of “point elimination”. It is on this road that one can meet abstract spaces (first
studied by Hausdorff who took the notion of open set as a primitive in the
study of continuity in such spaces), Heyting algebras (which arose from the
epistemological deliberations of Brouwer), pointless topology (where open-
set lattices are taken as primitive notions, irrespective of whether they are
composed of points), point-wise, or formal, topology (an intuitionistic approach
to topology, based upon Martin-Lof’s type theory, which proves to be slightly
more restrictive than pointless topology). A further step in the process of
(pointless) abstraction may be taken by considering the category of locales
(whose objects are complete lattices equipped with the infinite distributive
law, and whose morphisms are maps preserving finite meets and arbitrary
joins), which, according to many category-theorists is the structure within
which pointless topology must be developed. Whatever one may think of
the latter assertion, an essential feature of the results available is that they all
invoke non constructive principles: the localistic framework allows to give
classical theorems of topology constructive proofs. What one can gain by
doing constructive topology is that there are contexts in which one may like to
do “topology” but one does not wish to assume the law of excluded middle or
the axiom of choice. Such contexts are called topoi. Apart from this alleged
constructive aspect, there are nevertheless several results which say that, from
one point of view (i.e., when one works with spatial locales), working with
locales is doing nothing more than a disguised version of classical point-set
topology. One may, of course, consider non spatial locales but very little
work has been done on specific applications of such tools. Furthermore, large
parts of the theory of locales can be internalized in any topos and a topos
is nothing but a category which is sufficiently “like” the category of sets for
one to carry out set-theoretical constructions inside it. Point-wise (or formal)
topology is related to pointless topology by the adjunction (in the category-
theoretic sense of the word) between the category of locales and the category
of topological spaces. In the case of spatial locales, the adjunction reduces to
an adjoint equivalence between the category of spatial locales and the category
of sober topological spaces. Thus the point-wise and the pointless approaches
are essentially equivalent as soon as one wishes to deal with spatiality.
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The overall gain possibly provided by pointless or point-wise topology is
thus quite limited. The basic reason is that, despite the generalization provided
by the “elimination” of points and whatever the level of abstraction is, the
algebraic structures implied by these approaches are essentially the same as
those defined in a point-set topological framework.

Locology []1,2,/5+7] has been elaborated by the author as an alternative to
topology in order to provide new mathematically and philosophically accept-
able and fruitful solutions to the above mentioned problems. It allows in
particular, from the giving of a reflexive (and possibly symmetric) relation,
which may be seen as a relation of resemblance or as the measure of a gran-
ularity over some carrier set, to redefine most concepts of topology in a more
satisfactory way: the concepts of core and shadow, which are substituted for
that of interior and closure, are not idempotent; to any subset in a locological
space may be associated its frontier and its boundary (the former being divided
into its inner and outer parts), the distinction between the two entities being of
prime importance both from a mathematical and an epistemological viewpoint
(mathematically speaking, a frontier has a certain “thickness”; epistemologi-
cally speaking, it allows to distinguish between punctuality and indivisibility);
the relevant algebraic structure is that of a complete and complemented, but
not distributive, lattice with a semi-implication. The distinction, in locology,
between boundaries (which have no analogue in the world of “real” entities)
and frontiers allows, in particular, to revisit some fundamental problems left
open by topology (and mereotopology): that of contiguity and contact [2].
These problems originate from the set-theoretical and topological definition
of the continuum and the consecutive failure in the treatment of boundaries.
It also leads to formalize, in an essentially new way, the key concepts of cat-
egorization [7]. Locological spaces encompass Poincaré-Zeeman tolerances
spaces [9,[10L[13]], Choquet’s pretopological spaces [3,/12], and mathematical
morphology. The study of locological concepts and the structure thus implied
allow to understand why these three (independent) streams of research have not
been followed up.

The anti-realism at the root of the rejection of actual infinity and the Can-
torian conception of the continuum is, as is well known, intimately related
with the anti-realism (or anti-platonism) in logic which leads to substructural
logics, in particular intuitionistic logic. However, the topology/locology alter-
native, sketched above, suggests, first, that the criticisms addressed to topology
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translate to intuitionistic logic, and, second that a new logic of which locology
would be the “geometric” counterpart is needed.

Localistic logic, the definition and the study of which are the object of Sec-
tion 2, meets this requirement. We first prove that, contrary to the intuitionists’
claim, the law of excluded middle is in no way a principle of omniscience and is
perfectly compatible with a constructive view of logic and mathematics, and that
the excluded middle and the reductio ad absurdum are not in general mutually
dependent. Next, localistic logic allows to revisit the question of the admissi-
bility, from a constructivist viewpoint, of the thinning on the left (also called
the positive paradox axiom), i.e. A - (B — A) and the thinning on the right,
iie. A > (~ A - B), which are admitted by both classical and intuitionistic
logics. It is worth noticing that this question was raised by the first intuitionists:
Kolmogorov rejected A - (~ A - B) but accepted A — (B — A); Glivenko,
whose axiomatization was the one adopted by Gentzen, raised the same ques-
tion but eventually followed Heyting in keeping both thinning on the right and
thinning on the left. This question has also been tackled by relevant logics, the
first axiomatization of which was actually proposed by another Russian intu-
itionist, Orlov. The rejection of both thinning on the right and thinning on the
left by relevant logics is the main departure from intuitionistic logic. However,
the various versions of relevant logics fall short of an interesting semantics (i.e.
a semantics where the truth-values may be expressed in terms of classes of
objects).

Localistic logic leads to rejection of A — (B — A) on the basis that, if A
may be derived from a set I' of hypotheses (I' - A) then there is no reason that,
for any B, B - A may be derived gratis prodeo (I' - B — A). However, this
may hold for some I"’s, in particular for I' = &5: if - A then B — A (a theorem
may be derived from anything). What relevantists did not actually realize is that
a theorem is more than a formula deduced from an empty set of hypotheses. As
far as thinning on the right is concerned, the localistic argument is as follows:
A - (~ A - B) being related to the reductio ad absurdum, its (in)admissibility
depends on some further assumptions. A study of propositional and predicate
logics is performed in Section 2. An essential feature is, as alluded to above,
the weakening of the deduction theorem.

Section 3 is devoted to the study of the categorical substratum of localistic
logic. It is shown that the theory of (pre)loci provides localistic logic with a
category-theoretic basis. However, the role played by localistic logic for loci
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theory is not quite analogous to that played by topoi theory for intuitionistic
logic. Indeed localistic logic cannot be seen as an internal logic of a locus.
On the contrary, it may be seen as emerging from a (pre)locus. We may prove
however the equivalence between locus-validity and localistic provability.

1. Locology

Let X be a set and let A be a reflexive relation on X: Az, for any z in X. The
relation A is to be thought of as a resemblance or an indistinguishability relation
on X. The set A\[z] = {y : z\y} of A-relatives of z, the elements of which may
be seen as being close to (or resembling, or being indistinguishable from) z, is
called the halo of x. As A may be defined as a map X — p(X), z —> A\[z],
we denote by A(A) the set

A(A) = U Ale]

zeA

so that A[x] = A({z}). Next, one defines the following two operators h and s
which associate to any A in (X)) its core and its shadow respectively. More
precisely, let h : p(X) — g(X) be the operator which associates to any A its
core

h(A)={xe X : \[x]c A}.

Immediate properties follow:

(1) h(A) € A, h(X) = X,

(2) If A c Bthen h(A) c h(B),
() h o h(A) € h(A),

(4) h(AuB) 2 h(A)uh(B),
(5) h(N; Ai) = Ni h(A;).

It is worth emphasizing that, contrary to the properties of an interior operator
in topology, h is not idempotent (unless A is assumed to be transitive). On the
other hand, property (5) holds for infinite intersections.

The shadow operator is defined in a dual way. It associates to any A € p(X)
its shadow s(A) defined by

s(A)={z e X : \[z]n A % g}
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The operators h and s are interdefinable since clearly

s(A) = h(A),

where A denotes the complement of A. Immediate properties of s then come
out:

(1) 5(4) 2 4, 5(2) = 2.
(2)If Ac B, then s(A) ¢ s(B),
(3) sos(A) 2s(4),

4) s(AnB)cs(A)ns(B),
(5) s(U; Ai) = Ui s(4s).

Like h, the operator s is not idempotent and, unlike topology, equality (5)
holds for infinite unions.

The idea of using a reflexive (and symmetric) relation to recapture the in-
tuitive notion of indistinguishability is not new. That of having recourse to
non idempotent “interior” or “closure” operators is not without predecessors
either. The former idea can be traced back to Poincaré’s works on the physical
continuum. As claimed by Poincaré [9], “the raw result of experience may
be expressed by the relation A = B, B = C, A < C, which may be taken as
a formula of the physical continuum”. Here, A = B is to be understood as
“A and B are indistinguishable”, and A = B is then a reflexive and symmetric
relation over the collection of entities under study. This approach was exploited
by Zeeman [13] in his works on tolerance spaces.

The idea of a non idempotent closure operator can be traced back to Choquet’s
paper on pretopology [3]. Such an operator is nowadays referred to as a Cech
closure operator [12]. Depending upon the properties it is equipped with
(isotony, accretivity, sub-linearity, . . .) the resulting spaces are called extended
topologies [8]], neighbourhood spaces [4], Smyth spaces [11]], or pretopologies.

However these two streams of research have not been followed up. The
basic reasons seems to be the following. The Poincaré-Zeeman approach
is essentially geometric and is then deprived of an algebraic (and a logical)
content: there is nothing, in tolerance spaces, which can play the role of the
lattice of open sets in a topological space. In a symmetric way, the approaches
pertaining to the stream initiated by Choquet have a poor geometric content.
Furthermore, they lead to very poor algebraic structures too: as a generalization
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of the Kuratowski closure algebra, the algebra {cl(A) : A ¢ X}, where cl
denotes the generalized closure operator, fails, for instance, to be sup-complete,
so that the disjunction of objects of the algebra cannot be defined. If A and B are
“closed” sets, nothing can be said of the entity “A and B” (apart from the fact
that, in general, A n B is not “closed”). These limitations are insurmountable.

Owing to the property (5) of h and s, the corresponding algebras, as will be
seen below, have much stronger properties. Many results may then be derived,
most of which are not derivable in a generalized closure space or in a tolerance
space.

We consider the two families:

L={h(A): Ac X},

K={s(A): Ac X}.

Itis clearthat L= {A: Ae K} and K = {A: A€ L}. In view of the properties
of h, (L£,n) is a complete and bounded inf-semi-lattice. However, for A and B
in £, Au B may not be an element of £. Indeed, given A and B there may not
exist C' € p (X) such that h(C') = Au B. Hence (£, U) is not a sup-semi-lattice.
We may however define, for A and B in L:

AuB=(Y{CeL:C2A,C2B},

the existence of which is guaranteed by the inf-completeness and the bound-
edness of £. A u B is thus the least upper bound of the set of objects of £
which contain A u B. Thus (£, n, U) is a complete lattice. But it fails to be
distributive. Indeed we may have An B=AnCand AuB = AuC and
B + C, the equality B = C being a necessary and sufficient condition for a
lattice to be distributive. Furthermore

hoX(A)=({BeL:BcA},
for any A ¢ X. Hence
Aoh(A)c AchoA(A),
where the equality holds on the right-hand side iff A € £, and then

AuB=ho)AuUB),
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forany A, B e L.

The lattice (£, N, ) is called a locology and X a locological space. Despite
the differences between locology and topology (non-distributivity of £, com-
pleteness of £, non-idempotency of h and s), the consequences of which are of
prime importance, it is quite clear that the objects of £ bear some resemblance
with open sets in a topological space. However, £ may be defined as

L={AcX:A=hoA\(A).

The operator h o \ is accretive, order-preserving, and idempotent. Hence h
o\ is an algebraic closure operator, i.e. a closure operator in p (X) viewed as
an ordered set. Of course, it is not a topological closure operator since e.g.
hoA(AuUB) # hoA(A)uho\(B). This means that the objects of £ have
something in common with closed sets in topology.

A dual analysis may be carried out for the algebra

K={s(A): Ac X}.
Indeed, if one defines, for A, B € IC,
AnB=|J{CeK:CcA,Cc B},

then (K, M, u) is a complete, but not distributive lattice, where, furthermore:

hoXA)=|{CeKk:Bc A},

AnB=hoAAnB),

and, if \ is symmetric,
hoA(A)=MXoh(A)

AnB=Xoh(ANnB)
The fact that IC may be rewritten as
K={AcX:A=hoA(A)}={AcX:A=ho)(A)}
and, if A is symmetric, as

K={AcX:A=\oh(A)}
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shows that the objects of K have a superficial similarity with closed sets in
a topological space and a deeper resemblance with open sets in a topological
space.

This may seem paradoxical at first glance. It is, however, a key point of
locology. To more accurately specify this, one first has to revisit the concept of
aboundary. The critical analysis of the concept of a boundary in topology leads
us to actually define two different concepts: to any region A, one associates
its frontier and its boundary, the former being divided into its inner and outer
parts.

To any A ¢ X, one associates its inner frontier 0;,(A) = M(A) n A and
its outer frontier O,u1(A) = M(A) n A. The frontier of A is then 9(A) =
Oin(A) U 0put(A) = A(A) n A(A). Among many properties, which follow
from their definition, a remarkable property is the idempotency of 0;,, and Oyt
which follows from

h[0in(A)] = h[0out(A)] = @.

The epistemological significance of these equalities is that locology allows us
to distinguish between punctuality and indivisibility (these two notions being
unduly identified to each other in topology). Indeed, 0;,,(A) and Oyt (A) may
be considered, on the one hand, as indivisible since they have empty cores and,
on the other hand, as having a certain “thickness” (unless A coincides with the
diagonal of the carrier set X).

One may now define the concept of a boundary. The boundary of A € X is
defined to be the core of its frontier

B(A) = h(0(A)).
Since (A) = A (A) n A (A), one has
B(A)=hoX(A)nhoA(A).

Hence

(1) B(A) = B(A) e L,
(2) AN B(A) = Ao h(A),
(3) AUB(A) = ho MA),
@) A e Liff B(A) € A,
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(5) AeKiff AnB(A) = 2.

Thus, as already alluded to above, objects of £ and X have properties in
common with closed sets and open sets in topology, respectively: any A in £
contains its boundary; any A in K is disjoint from its boundary.

This shows that locology allows us, not only, to define purely locological
concepts (the core h, the shadow s, the frontiers J;, and O,,:) which have
no counterpart in topology, but also concepts that may be seen as “quasi
topological” (the operators i o A and A o h, the boundary ) with common
features and essential differences with their topological pendants. It may also
be shown that topology is the limit case of locology corresponding to an
infinitely small granularity.

Given a locological space X, one may define in £ the unary operator - by
setting —A = h(A), the core of the complement of A. The operator — clearly
satisfies

(HAN-A=g,
2)Au-A=+X,
(3)Au-A=X,

(4) =—A = Aiff X is symmetric.

Hence, - is a complementation in £ and an orthocomplementation iff A is
symmetric (these properties being not equivalent in a non distributive lattice).
Anticipating on the next section, this translates into logical terms as follows.
First, (1)—(3) show that, contrary to the intuitionists’ claim, the law of excluded
middle is in no way a principle of omniscience: for any A € £, A and —A are
disjoint and their disjunction A L = A covers the universe, but there may exist
objects of X that do not belong to either of A and —A. Second, (3) and (4)
show that the law of excluded middle and the reductio ad absurdum may not be
interdependent.

Next, for any A and B in L, let = be the binary operator defined by

A= B=h(AuB),
the essential properties of which are

(H)A=B=Xiff AcB,
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Q) A= g =-A,

(3)An (A= B)cB,

@D (A=>B)n(A=C)c A= (Bn(),
B (A=B)n(B=C)cA=C,
6)C§A:>B

( AnCcB’

However, the reciprocal to (6), i.e.

AnCcB
CcA=1HB

holds only if £ is distributive (in which case £ is a Boolean algebra) i.e. only
if A is transitive. Therefore, = is not, strictly speaking, an implication. It
implies, in particular, that
A=X
B=A=X
holds but
A= (B=A)=+ X.

Anticipating, once again, on the following section, this inequality translates
into the non-validity of the positive paradox axiom (thinning on the left).
Similarly, although

A=>C=X B=C=X
(AuB)=C=X

holds, one generally has
(A=C)n(B=C)¢(AuB)=C.

The properties of = (called, from now on, a semi-implication) and of the
disjunction U, as compared to those enjoyed by the corresponding operators in
a Boolean or a Heyting algebra (hence in classical and intuitionistic logics),
are essential features of the locological framework from a logico-algebraic
viewpoint.

One may then define, as a natural abstraction of the above algebraic struc-
ture, the concept of A-algebra. A A-algebraisaS-tuple (L, A, Vv, -, =) such that

(1) (L, A, V) is alattice with a least element 0 and a greatest element 1.
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(2) (L, =) satisfies
a=>b=1iffa <,
an(a=0b)<b,
(a=b)A(b=c)<(a=c),
(a=b)Ar(a=c)<a= (brc).

(3) (L, -) satisfies
-a=a=0,

——a = Q.

where a < biffanb=a.

Theorem 1.1. In a A-algebra L, the following properties hold:

(a) - is an order-reversing involution.

(b) aA-a=0.

(c) =(avd)==an=b; =(and)=-avV-b.

(d) a = bis increasing wrt a and decreasing wrt b.
(e) av-a=1.

) (a=b)Ar(a=c)=a= (brc).

(@ (avb)=c<(a=c)A(b=c).

(h) ifc<a=bthenanc<b.

(i) ifanc<bthenl =c<a=b.

O

From now on, we will consider locologies whose underlying relation A is
symmetric, i.e., locologies that are orthocomplemented, as lattices.

Theorem 1.2. (a) Any locology is a A-algebra. (b) Any A-algebra

(L, A, Vv, =, =) may be embedded into a locology on some set.

Proof. (a) is obvious. To prove (b), consider the MacNeille completion L* of

L,ie.

L*={A":AecL}cp(l)
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where A* is defined, for any A € L, by
Ma={m:a<m,forany ae A},

A* ={x:x <m,forany m e A}.

If A= g then M4 = L and A* = 0 where 0 is the least element of A. Hence
(L*,c,n) is a complete inf-semi-lattice with a least element 0. It may then be
equipped with the structure of a complete lattice (L*, <, N, v*) by setting

A*V*B*=({CeL":C2A*,C2B"}.

The image under the transformation A — A* of a singleton a of L is the subset
{be L:b<a} which will be denoted (a |). Let 7 be the set {(a |):ae L}.
The mapping a — (a |) € T is obviously one-to-one and onto. Since a < b
in Liff (a ) € (bl)in T, identifying {a} with a leads to considering a
mapping f: L — T € L* , a — (a |). One may then easily prove that f is
a monomorphism. O

2. Localistic logic

The language of propositional localistic logic (LL for short) has an alphabet
consisting of proposition symbols: pg, p1,.. ., connectors: A, Vv, -, <>, 1, and
auxiliary symbols: (,). The set ® of formulas is the smallest set X such that

DpieX,ieN, 1e X,

QIfp,ve X, thendpAny,pvh,p—>1elX.

The axioms and the inference rules for propositional LL are instances of
one of the following forms, where ~ ¢ stands for ¢ -1 and ¢ <> 1) stands for

(¢ =) A (P — )

Axioms
Al 1-9¢
A2a oAy —> o

A2b  dAY =
A3 (9= Y)A (9= X)) = (@~ W AX)
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AL (- AW—=>x)> (=X
ASa ¢ Vi

ASb  p > pv

A6 (PA(P—>Y) )

AT o

Inference rules

ny GO
(G
Rz 2
(Gl
rR3 2o xv-ox
(pve) —>x
A formula is said to be provable, denoted +r; ¢ or simply + ¢, iff there
exists a sequence @1, ¢a,..., ¢, of formulas such that ¢, = ¢ and, for any

1 < n, ¢; is either an axiom or follows form earlier formulas in the sequence
by a rule of inference from {R1, R2, R3}. A valuation v is a mapping
v:¢p — (L,A,Vv,~,=), where L is a A-algebra, such that

v(L) =0,

v(P A1) =v(d) Av(e),
v(¢vy) =v(¢) Vo),
v(¢ =) = (¢) = v(¥),

v(~ ) = ~v(9).

Let L be a A-algebra. A formula ¢ € ® is L-valid iff, for any algebra v, v(¢) = 1,
the greatest element of L.

Theorem 2.1. + ¢ iff ¢ is L-valid for any A-algebra L.
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The above completeness theorem deals only with the equivalence between
provability and validity in a A-algebra. One now has to consider deducibility
from a set I' of formulas (which, as usual, may be thought of as hypotheses).
Unlike the classical and the intuitionistic cases, the extension from provability
(+ ¢) to deducibility from I" (I" + ¢) is far from obvious. It leads, in particular,
to the non-validity of the deduction theorem.

We say that ¢ is deducible from a set I' of formulas, denoted I" +~ ¢, iff
either ¢ is provable (- ¢) or there exists a sequence ¢1, .. ., ¢, = ¢ of formulas
such that each ¢; is either an axiom or a formula of I" or follows from earlier
formulas in the sequence by the inference rule R1.

We say that ¢ is I'-valid, denoted I' = ¢ iff, for any L and any valuation v,
there exists I'g € I', I'g finite, such that

N\ v(7) <v(9).

velo
Theorem 2.2. If ¢ + ), then — ¢ — 1.

Proof. Two cases have to be considered. If ~ ¢ then + ¢ — 1 by R2. If + ¢
then ¢ + 1 means that y) may be deduced from ¢, A1-A7 plus R1. As Rl is
the only inference rule, unless ¢ and ¢ are the same formula (in which case the
statement of the theorem is trivially true), ¢ — ¢ — 1. But this holds iff - ¢ —

. O

We seem to be well on the way to a proof of the deduction theorem. Indeed,
from theorem 2.2l which asserts

Py
o>
and consequently
¢la¢2)"‘v¢n'_w
F(P1Aga A Adn) >

we might expect that, for any I,

¢
Trooo

However, we have the
Theorem 2.3. I' +~ ¢ does not entail I' + 1) — ¢.
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Proof. Suppose that I' + ¢ implies I + 1 — ¢ for any +. Then, applying
theorem 2.2 above and theorem below, I' = ¢ implies I' = ¢ — ¢ for any
1. A necessary and sufficient condition is that v(v)) = v(¢) > v(¢) for any
valuation v. Such an inequality generally does not hold. O

We must emphasize the contrast between the validity of

Vo

FY > ¢
and the non-validity of

Lo

et —9

i.e. of the deduction theorem. The validity of the former means that either ~ ¢
and then + ¢ - ¢ (a theorem may be deduced from anything) or # ¢ in which
case ¥ + ¢ iff - 1) — ¢, i.e. iff ¢ - ¢ has already been proved. The validity of
the latter would mean that if ¢ may be deduced from I U {1} then, irrespective
of whether ¢ (or 1) — ¢) appears or not in the deduction of ¢, 1) - ¢ may be
deduced, gratis prodeo, from I'. Such a scheme is not allowed in a localistic
framework. Although highly non constructive, this derivation is possible in
intuitionistic logic.

It must be clear that the weakening of the deduction theorem (or, equiva-
lently, the non-validity of the positive paradox axiom ¢ — (¢» — ¢) ) is the
logical counterpart of the non-distributivity of a A-algebra, which itself is the
translation in algebraic terms of the non-idempotency of the shadow and the
core operators in a locological space.

A set I' of formulas is said to be consistent if I' t+ L. Otherwise, it is said
to be inconsistent. I" is said to be complete iff, for any formula ¢, I' - ¢ or '

F~ ¢.
Theorem 2.4. (a) If T U {¢} is consistent then T -~ ¢. (b) If T is complete,
then the reciprocal to (a) holds.

Proof. (a) LetT" u{¢} be consistent and suppose that I' -~ ¢. Then I, ¢ +~ ¢.
But, since I', ¢ - ¢, then I, ¢ 1, a contradiction.

®) I T+~ ¢, since I is complete, I' -+ ¢. Suppose thatI', ¢ L. ThenI" 1,
and I' —~ ¢, a contradiction. O

Theorem 2.5. T’ is consistent iff T is satisfiable.
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Proof. (a) If T is satisfiable, then there exists a valuation v such that v (y) = 1
for any v € I'. Suppose I' is not consistent. Then I' + 1 and therefore I'g +
1 for some I'g ¢ I', I'g finite. Setting I'g = {7v1, 72, ..., 7n} leads to vy,
Yy ooy Yn F Ly i (Y Ay Ac- Ayp) and E~ (71 Ay2 Ao AYp). Thus,
v(y1 Ay2 A Ayn) =0, a contradiction.

(b) Let I' be consistent. From part (a) of theorem [2.4] if v is consistent then
#~ v and, consequently, ¥~ . Suppose I is not satisfiable, in which case there
exists v € I' such that, for any v,v(7y) < 1. By induction on the length of -, v
() = 0 for any v, i.e. v(~ 7) = 1, for any v. Thus E~ ~, a contradiction. O

Theorem 2.6. If '~ ¢ then I E ¢.

Proof. If + ¢ then E ¢, whence I' = ¢. If T - ¢ (and ¥ ¢), then there exists 'y
={v1,v,...»7} S suchthat 'y - ¢. Then (71 Ay A--- A7y,) = ¢ and
E(yiAY2A-AYy)—=> @ ThusTg E¢pand I E ¢. O

Theorem 2.7. IfT' = ¢, then I + ¢.

Proof. (a) If T is finite, the reciprocal to theorem [2.6| clearly holds. Indeed, if
I'={v,72,....,m}theny, 72, ..., mE ¢entails E (Y1 A2 A Ayp) > @
hence H(y1 AY2 A+ Ay ) = die. Y1, Y2, -+ Tn F .

(b) If " is infinite, there exists I'g € I', Iy finite, such that

N v(7) <v(9),

v€lo

i.e. I'g = ¢. Applying (a) leads to I'g + ¢. Thus I' + ¢. O

3. Categorical substratum

The aim of this section is to provide localistic logic (and locology) with a
categorical substratum which would play to some extent the role played by
topoi theory and set theory for intuitionistic and classical logic respectively. As
a A-algebra is a non distributive lattice the disjunction of which is weaker than
the intuitionistic and the classical ones, it is a priori quite clear that the required
categorical framework must exhibit a weakened form of exponentiation.
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3.1. Preloci
A category C is said to have semi-exponentiation if
(1) any pair (A, B) of objects of C has product A x B,
(2) for any pair (A, B) of objects, there is an object B and an arrow e:

B4 x A — B such that, for any g : C' x A — B, there exists at most one
arrow § : C' —> B such that the diagram

BAx A

§]><1A €

CxA

commutes. If, for a given g, g exists, we will write

g:CxA— B
§g:C — BA

where g and § may be omitted.

(3) The following rules hold

A— B
@ =5
CBxBAxA—C
(b)

CBxBA (A ’

BAxCAxA— BxC

© BAxCA — (Bx(C)A~

The arrow e is called the evaluation arrow. The arrow g, if it exists, is called
the exponential adjoint of g.

Theorem 3.1. The correspondence g — § is bijective. O
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Although the correspondence g —> ¢ is bijective, Hom(C' x A, B) and
Hom(C, BA) are not isomorphic. As § may not exist, the correspondence is
not necessarily a total function.

A category A which has

(1) aterminal object 1,

(2) apullback and a pushout for each pair of arrows,
(3) semi-exponentiation

will be called a prelocus (plural: preloci). Clearly, a prelocus has initial
object 0, for any pair (A, B) of objects, a product defined by an object A x B
together with projections 74 p: Ax B— Aand 7'y 5 : Ax B — Banda
coproduct given by an object A + B and injection arrows JjaB:A— A+DB
and jy,5: B— A+ B.

Theorem 3.2. In a prelocus A, the following properties hold
(1) 020 x A, for any object A.
(2) If there exists an arrow A — 0, then A = 0 and the arrow is a mono. [

3.2. The algebra of subobjects in a prelocus

Let A be a prelocus and let X be an object of A. First recall that a subobject
of X is defined as follows. Given two monos f: A > X and g : B = X, one
sets f ¢ g iff there exists h : A » B such that f = g o h. Then, the relation
~ defined by f ~ g iff f € g and g € f is an equivalence on the set of monos
with codomain X. Furthermore, if f ~ g, there exists an iso k : B — X with
inverse h : A —> X such that f = goh and g = f o k. The equivalence class of
f modulo ~ is denoted [ f] and is said to be a subobject of X. The set Sub(X')
of subobjects of X is thus

Sub(X) ={[f]:f:A» X, some A}.

We will usually write “the subobject f”” when we mean “the subobject [ f]”.
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3.2.1. Conjunction

Let f: A > X and g : B » X be two subobjects of X. The conjunction
of f and g is defined to be the pullback of f and g, i.e. the subobject f N g:
A xx B > X such that

A x X B

A

fng

Y

X

B
9

is a pullback square. The subobject f N g is thus defined up to isomorphism.

3.2.2. Disjunction

The disjunction of two subobjects f : A » X and g : B » X of X is the
subobject f U g of X such that the diagram

A+ B [f7g] X

[f, g]* fug

AuB

is an epi-mono factorization. In other words, fuUg is the image of the coproduct

arrow [ f, g] (the least subobject of X through which [ f, ¢] factors) and AuB =

[f,9]"(A+ B),[f,g]" being an epi.

Theorem 3.3. (Sub(X),c,n, V) is a lattice with a least element Ox and a

greatest element 1x. O
However, Sub(X) is not, in general, distributive. Indeed, let f : A » X and

g : B > X be subobjects of X such that

fng ~ fnh =~ Ox,
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fug ~ fuh.

We then have the following commutative diagrams

[f,9] [f,h]
X A+C

A+ B

[f: 9] fug Lf h]* fuh

AuB AuC

ie. fug =~ |[f,gland f U h ~ [f,h]. But, g # hsince B # C. Thus, in
general, Sub(X) is not distributive.

3.2.3. Semi-implication

Let f: A X and g : B » X be two subobjects of X. We define f = ¢ :
B4 » X as a subobject of X such that the diagram

AXXBA

A

Y

X

B
9

where h = f n (f = g), commutes. From the definition of f n g, we have the
following commutative diagram
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AXXBA
\‘k\‘
AXXB A
f
B X
Y
Hence (fng)ok~ fn(f=g). Thus
folf=g9)cfng.

The existence of such a subobject is guaranteed by the fact that, in any lattice
L, for any z,y such that y < x, there exists z € L such that x A z < y. Clearly
there are several possible choices.

Theorem 3.4. The following holds

(@Ifhc f=gthenhn fcg,
®Iff=>g~1x then f cg. O

The converse to (a) does not hold. Thus f = ¢ is not an implication. That
is why it is called a semi-implication.

Theorem 3.5. For any subobjects f : A > X,g: B> X and h: C » X of
X, the following holds:

@ (f=g9)n(g=h)cf=h,
®) (f =g)n(f=h)cf=(gnh),
) Iffcgthen f=g~1x. 0

Let f: A > X be a subobject of X in a prelocus A and let x : 1 — X. If
there exists k : 1 —> A such that the diagram
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A ¥ X

commutes, we say that = is an element of f, denoted x € f.

Theorem 3.6. In any prelocus, for any object X, we have in Sub(X ),z € fng
iff x € fand x € g.

Proof. (a) If x € f n g, then there exists k such that x = (f ng) o k. Since
fngcf, there exists j such that fng=foj. Thusz = fojok,ie xe€ f.
Similarly, x € g.

(b) Suppose that x € f and x € g and consider the diagram

A X

9

By definition of f n g, the inner square is a pullback, so the arrow m does exist
making the whole diagram commute. Hence (f ng) om = f ok = z. Thus
refng. O

3.2.4. Complementation

In a prelocus, one can associate to any f : A > X in Sub(X) the subobject
—f:A>» X defined by —=f ~ f = Ox and called the complement of f.
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Theorem 3.7. Forany X and any f: A > X and g: B » X in Sub(X), we
have

(@) fn-f=~0x,
(b) If f € g then —~g € —f.

Proof. (a) follows from the definition of the semi-implication. (b) Given f ¢ g,

then, for any h: C' » X, g = h € f = h. In particular g = 0x € f = Ox i.e.
-g € —f. O

3.3. Loci

A prelocus is called a locus if the commutativity of one of the two diagrams

1 1 --A
T T
k - f
Y
A X x|
f
implies that of the other and then of the square
!/
1 K —_A
k - f

A 7 X

for any object X. In other words, a prelocus A4 is a locus iff, for any object X
of A, and any = : 1 » X, the following equivalence holds true: (x € f) iff

(x e =f).
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Theorem 3.8. Forany object Xinalocus Aandany f : A Xandg: B —» X
in Sub(X'), we have

@ f=--f

(b)If =f c =g thengc f.

() fu-f=~1x.

d-(fug)=-fn-g.

@ -(fng)=-fu-g. O

Theorem 3.9. For any object X in a locus A, (Sub(X),S,n,uU,—~,=) is a

A-algebra.

Remark. In alocus, the following do not hold true: =

(@) If fng~0x thengc —f,

(b) If x € -~ f then not x € f,

()Ifxe fugthenz e forxzegy,
although the converse implications hold true.

The relationships between loci and A-algebras may be made more precise. In
a lattice L, when considered as a poset category, there exists an arrow a —> b
between two elements of L iff a < b. Since, furthermore, in a A-algebra,
x < a = bentails A a < b (the converse being generally false), the existence
of an arrow x — (a = b) implies that of an arrow z A a —> b. This is
reminiscent of the situation in a locus where there is a bijection between a
subset of Hom(x, b*) and Hom(x x a, b). Now, in a A-algebraa Az = x Aais
the product x x @ and a = b provides us with the exponential b*. The evaluation
arrow b x a — b is the unique arrow (a = b) A a — b which appears in the
definition of the semi-implication. Conversely, semi-exponentiation provides
semi-implication. Thus, categorically, a A-algebra is nothing but a category
with a terminal object, with pullbacks and pushouts for any pair of arrows, with
products and coproducts for any pair of objects and with a semi-exponentiation.
Thus any A-algebra is a locus.

3.4. Locus-validity

The above remark on the links between loci and A-algebras leads us to consider
the concept of locus-validity and its relation with localistic provability. Given
a set ¢ of formulas, defined via the formation rules given in section 2.1, and
a locus A, a formula ¢ € ® is said to be A-valid, denoted A E ¢, iff, for any
object X of A and for any valuation v: ¢ — Sub(X),v(¢) = 1x.
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Theorem 3.10. 1,7, ¢ iff ¢ is A-valid for any locus A.

Proof. (a) If -1, ¢ then ¢ is L-valid for any A-algebra L. Then, in particular,
¢ is Sub(X)-valid, for any X in A and any A, i.e. A E ¢ for any A.

(b) If A = ¢ for any locus A, then ¢ is Sub(X)-valid for any X in .4 and
for any A. Suppose that -1.;, ¢. Then ¥ ¢ i.e. there exists a A-algebra L
such that ¢ is not L-valid. But any A-algebra being a locus, this leads to a
contradiction. O

Clearly, in a locus with exponentiation we have f = (¢ = f) ~ 1x and
fcg=hiff fngch,forany object X andany f: A~ X, g: B> X and
h:C > X in Sub(X). This, in turn, leads us to compare the locus-theoretic and
the topos-theoretic frameworks, in particular from a logico-algebraic viewpoint.
The question of whether the algebraic operators N, U, — and = in the algebra
Sub(X) of subobjects of some X in a locus (or, equivalently, in view of
theorem [3.10} the logical connectors in localistic logic) may be - or should
be - internalized is of prime interest. Indeed, a remarkable feature of the
above analysis and results is that loci theory makes no use of the concept
of subobject classifier and that the logical connectors or the corresponding
algebraic operators have no internal counterpart.

Far from being a drawback, the impossibility to internalize the logical con-
nectors and then to consider localistic logic as an internal logic of some (hence
any) locus, is a highly desirable result. First, it means that L L must be seen
as emerging from a locus-theoretic structure and it asserts the pre-eminence
of the (categorical) structure over the logic which emerges from it. The links
between topoi theory and intuitionistic logic (IL) convey the opposite - and
highly controversial - view. Second, the definition of a subobject classifier
in Set, which allows to recapture the definition of the Boolean topos Set as a
special case of the general definition of a topos, is rather artificial. Finally, the
equivalence between IL-provability and topos validity hides a situation which
seems somehow anomalous. On the one hand, topos validity and IL-provability
only depend on the algebraic - hence external to the topos - structure of the
algebra Sub(1) of subobjects of the terminal object 1, Sub(1) being not an actual
object in a topos. On the other hand, from an internal viewpoint - which should
prevail since IL is defined, via truth-arrows, as an internal logic -, what actually
matters is QX for any X, i.e. the internal version of the notion of power set, of
which Sub(X) is the external version. But QX plays no role in the definition
of the validity/provability. The divorce between the internal and the external
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versions culminates in a rather counter-intuitive result: there are non-Boolean
topoi, i.e. topoi where Sub({2) is not a Boolean algebra, which do validate
classical logic. The usual claim that topoi theory is to IL what set theory is to
classical logic (CL) and, therefore, that topoi theory is the right generalization
of set theory in some sense, is, to say the least, questionable. Such a situation is
just impossible in a locus-theoretic framework. Indeed, if we define a Boolean
locus as a locus such that, for any object X, Sub(X) is a Boolean algebra (i.e.
such that, forany f: A»> X,g: B>» Xand h:C » X, f=(g=f) ~ 1x
and fngc hiff f < g = h), aformula ¢ is CL-valid iff ¢ is valid in any
Boolean locus.
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1. Introduction

As a society, we have become dependent on information technology for many
aspects of our daily life, and as a consequence, dependent upon cryptography.
The need for developing various cryptographic tools to address new challenges
in storing and processing information is therefore clear. One of these challenges,
namely how to securely and efficiently process information owned by several
different parties, is addressed in this paper.

The problem of secure multi-party computation was originally suggested by
Yao [19] in 1982. The concept usually refers to computational systems in which
several parties wish to jointly compute some value based on individually held
secret bits of information, but do not wish to reveal their secrets to anybody
in the process. For example, two individuals, each possessing some secret
numbers, = and y, respectively, may wish to jointly compute some function
f(x,y) without revealing any information about x or y other than what can be
reasonably deduced by knowing the actual value of f(x,y).

Secure computation was formally introduced by Yao as secure two-party
computation. His “two millionaires problem” (cf. our Section [3) and its
solution gave way to a generalization to multi-party protocols, see e.g. [4], [[7].
Secure multi-party computation provides solutions to various real-life problems
such as distributed voting, private bidding and auctions, sharing of signature
or decryption functions, private information retrieval, etc.

In this paper, we showcase several protocols, originally offered in [13]],
for secure computation of various functions (including the sum and product)
of three or more elements of an arbitrary constructible ring, without using
encryption or any one-way functions whatsoever. We require in our scheme
that there are k secure channels for communication between the k£ > 3 parties,
arranged in a cycle. We also show that less than k secure channels is not
enough.

Unconditionally secure multiparty computation was previously considered
in [4] and elsewhere. A new input that we offer here is that, in contrast with [4]
and other proposals, we conceal “intermediate results” of a computation. For
example, when we compute a sum of k£ numbers n;, only the final result Zle n;
is known to the parties; partial sums are not known to anybody. This is not the
case in [4] where each partial sum Zle n; is known to at least some of the
parties. This difference is important because, by the “pigeonhole principle”, at
least one of the parties may accumulate sufficiently many expressions in n; to



Secure Multiparty Computation 65

be able to recover at least some of the n; other than his own.

Here we show how our method works for computing the sum (Section[2)) and
the product (Section[2.2)) of private numbers. We ask what other functions can
be securely computed without revealing intermediate results.

Other applications of our method include voting/rating over insecure chan-
nels (Section[2.4)) and a rather elegant solution of the “two millionaires problem”
(Section 3).

In Section[5] we consider a cryptographic primitive known as “mental poker”,
i.e., fair card dealing (and playing) over distance. Several protocols for doing
this, most of them using encryption, have been suggested, the first by Shamir,
Rivest, and Adleman [18]], and subsequent proposals include [S] and [9]]. As
with bit commitment, fair card dealing between just two players over distance
is impossible without a one-way function since commitment is part of any
meaningful card dealing scenario. However, this turns out to be possible if the
number of players is £ > 3. What we require though is that there are k secure
channels for communication between players, arranged in a cycle. We also
show that our protocol can, in fact, be adapted to deal cards to just 2 players.
Namely, if we have 2 players, they can use a “dummy” player (e.g. a computer),
deal cards to 3 players, and then just ignore the “dummy’’s cards, i.e., “put
his cards back in the deck”. An assumption on the “dummy” player is that he
cannot generate any randomness, so randomness has to be supplied to him by
the two “real” players. Another assumption is that there are secure channels
for communication between either “real” player and the “dummy”. We believe
that this model is adequate for 2 players who want to play online but do not trust
the server. “Not trusting” the server exactly means not trusting with generating
randomness. Other, deterministic, operations can be verified at the end of the
game; we give more details in Section [5.2]

We note that the only known (to us) proposal for dealing cards to & > 3
players over distance without using one-way functions was published in [1]],
but their protocol lacks the simplicity, efficiency, and some of the functionalities
of our proposal; this is discussed in more detail in our Section[6] Here we just
mention that computational cost of our protocols is negligible to the point that
they can be easily executed without a computer.

Finally, in Section[7] we propose a secret sharing scheme where an advantage
over Shamir’s [[17] and other known secret sharing schemes is that nobody,
including the dealer, ends up knowing the shares (of the secret) owned by any



66 D. Grigoriev and V. Shpilrain

particular players. The disadvantage though is that our scheme is a (k, k)-
threshold scheme only.

2. Secure computation of a sum

In this section, our scenario is as follows. There are k parties Py, ..., Px;
each P; has a private element n; of a fixed constructible ring R. The goal is to
compute the sum of all n; without revealing any of the n; to any party P;, j # 1.

One obvious way to achieve this is well studied in the literature (see e.g.
[8,9,/12]): encrypt each n; as E(n;), send all E(n;) to some designated P,
(who does not have a decryption key), have P; compute S = >, F(n;) and
send the result to the participants for decryption. Assuming that the encryption
function E is homomorphic, i.e., that ), E(n;) = E(>_,n;), each party P;
can recover » . n; upon decrypting S.

This scheme requires not just a one-way function, but a one-way function
with a trapdoor since both encryption and decryption are necessary to obtain
the result.

What we suggest in this section is a protocol that does not require any one-
way function, but involves secure communication between some of the F;.
So, our assumption here is that there are k secure channels of communication
between the k parties P;, arranged in a cycle. Our result is computing the sum
of private elements n; without revealing any individual n; to any Pj,j # 1.
Clearly, this is only possible if the number of participants F; is greater than 2.
As for the number of secure channels between P;, we will show that it cannot
be less than k, by the number of parties.

2.1. The protocol (computing the sum)

1. P initiates the process by sending 1 + ng; to P», where ng; is a random
element (“noise”).

2. Bach P;, 2 <1 < k — 1, does the following. Upon receiving an element
m from P;_1, he adds his n; + ng; to m (where ng; is a random element)
and sends the result to P .

3. Py adds nj; + ngr to whatever he has received from Pi._; and sends the
result to P;.
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4. P subtracts ng; from what he got from Pj; the result now is the sum
S =3 1<ickMi + Doci<i noi- Then Py publishes S.

5. Now all participants P;, except P, broadcast their ng;, possibly over
insecure channels, and compute » ,,., no;. Then they subtract the
result from S to finally get > ;. ;. 1.

Thus, in this protocol we have used k£ (by the number of the parties F;)
secure channels of communication between the parties. If we visualize the
arrangement as a graph with k vertices corresponding to the parties P; and
k edges corresponding to secure channels, then this graph will be a k-cycle.
Other arrangements are possible, too; in particular, a union of disjoint cycles
of length > 3 would do. (In that case, the graph will still have k edges.) Two
natural questions that one might now ask are: (1) is any arrangement with
less than k secure channels possible? (2) with k secure channels, would this
scheme work with any arrangement other than a union of disjoint cycles of
length > 3? The answer to both questions is “no”. Indeed, if there is a vertex
(corresponding to P, say) of degree 0, then any information sent out by P; will
be available to everybody, so other participants will know n; unless P; uses a
one-way function to conceal it. If there is a vertex (again, corresponding to P;)
of degree 1, this would mean that P; has a secure channel of communication
with just one other participant, say P». Then any information sent out by P,
will be available at least to P», so P> will know n; unless P uses a one-way
function to conceal it. Thus, every vertex in the graph should have degree at
least 2, which implies that every vertex is included in a cycle. This immediately
implies that the total number of edges is at least k. If now a graph I has &
vertices and k edges, and every vertex of I' is included in a cycle, then every
vertex has degree exactly 2 since by the “handshaking lemma” the sum of the
degrees of all vertices in any graph equals twice the number of edges. It follows
that our graph is a union of disjoint cycles.

2.2. Secure computation of a product

Now we show how to use the general ideas of the protocol for computing the
sum (see Section to securely compute a product. Again, there are k parties
Py, ..., P each P, has a private (nonzero) element n; of a fixed constructible
ring R. The goal is to compute the product of all n; without revealing any
of the n; to any party P;, j # 7. Requirements on the ring R are going to be
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somewhat more stringent here than they were in Section 2. Namely, we require
that R does not have zero divisors and, if an element r of R is a product a - x
with a known a and an unknown z, then « can be efficiently recovered from a
and r. Examples of rings with these properties include the ring of integers and
any constructible field.

The protocol (computing the product)

1. P initiates the process by sending nj - ng1 to Pa, where ng; is a random
nonzero element (“noise”).

2. Each P;, 2 < i < k — 1, does the following. Upon receiving an element
m from P;_,, he multiplies m by n; - ng; (where ng; is a random element)
and sends the result to P; ;.

3. P, multiplies by ny - ngx whatever he has received from Pj_1 and sends
the result to ;. This result is the product P = II1<;<i n; - Ia<i<i no;.

4. P divides what he got from Py by his ng; the result now is the product
P = ngigk n; - HQSiSk no;- Then P1 publishes P.

5. Now all participants P;, except P, broadcast their ng;, possibly over
insecure channels, and compute IIo<;< no;. Then they divide P by the
result to finally get II1<;<j n;.

2.3. Effect of coalitions

Suppose now we have k > 3 parties with k£ secure channels of communication
arranged in a cycle, and suppose 2 of the parties secretly form a coalition. Our
assumption here is that, because of the circular arrangement of secure channels,
a secret coalition is only possible between parties P; and P; for some ¢, where
the indices are considered modulo k; otherwise, attempts to form a coalition
(over insecure channels) will be detected. If two parties P; and P;,; exchanged
information, they would, of course, know each other’s elements n;, but other
than that, they would not get any advantage if £ > 4. Indeed, we can just
“glue these two parties together”, i.e., consider them as one party, and then the
protocol is essentially reduced to that with £k — 1 > 3 parties. On the other
hand, if £ = 3, then, of course, two parties together have all the information
about the third party’s element.
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For an arbitrary k > 4, if n < k parties want to form a (secret) coalition to
get information about some other party’s element, all these n parties have to be
connected by secure channels, which means there is a j such that these n parties
are Pj, Pji1,..., Pji,_1, where indices are considered modulo k. It is not
hard to see then that only a coalition of £k —1 parties P, ..., P;_1, Pit1, ..., Pk
can suffice to get information about the P;’s element.

2.4. Ramification: voting/rating over insecure channels

In this section, our scenario is as follows. There are k parties Py, ..., Px; each
P; has a private integer n;. There is also a computing entity B (for Boss) who
shall compute the sum of all n;. The goal is to let B compute the sum of all n;
without revealing any of the n; to him or to any party P;, j # 1.

The following example from real life is a motivation for this scenario.

Example 1. Suppose members of the board in a company have to vote for a
project by submitting their numeric scores (say, from 1 to 10) to the president
of the company. The project gets a green light if the total score is above some
threshold value 7. Members of the board can discuss the project between
themselves and exchange information privately, but none of them wants his/her
score to be known to either the president or any other member of the board.

In the protocol below, we are again assuming that there are k channels of
communication between the parties, arranged in a cycle: P, — P, — ... —
Py — P;. On the other hand, communication channels between B and any of
the parties are not assumed to be secure.

2.5. The protocol (rating over insecure channels)

1. P initiates the process by sending n; + ng; to P», where ng; is a random
number.

2. Each P;, 2 <14 < k — 1, does the following. Upon receiving a number
m from P;_1, he adds his n; + ng; to m (where ng; is a random number)
and sends the result to P .

3. Py adds nj; + ngr to whatever he has received from P;_; and sends the
result to B.
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4. Py now starts the process of collecting the “adjustment” in the opposite
direction. To that effect, he sends his ng; to Py_1.

5. Py—1 adds ng(_1) and sends the result to Py_s.

6. The process ends when P gets a number from P, adds his ng;, and sends
the result to B. This result is the sum of all n;.

7. B subtracts what he got from P; from what he got from Pj;; the result now
is the sumof all n;, 1 < i < k.

3. Application: the “two millionaires problem”

The protocol from Section 2, with some adjustments, can be used to provide
an elegant and efficient solution to the “two millionaires problem” introduced
in [19]: there are two numbers, n; and ng, and the goal is to solve the inequality
n1 >7ng without revealing the actual values of n; or ns.

To that effect, we use a “dummy” as the third party. Our concept of a
“dummy” is quite different from a well-known concept of a “trusted third party”;
importantly, our “dummy” is not supposed to generate any randomness; it just
does what it is told to. Basically, the only difference between our “dummy’ and
a usual calculator is that there are secure channels of communication between
the “dummy” and either “real” party. One possible real-life interpretation of
such a “dummy” would be an online calculator that can combine inputs from
different users. Also note that in our scheme below the “dummy” is unaware
of the committed values of ny or no, which is useful in case the two “real”
parties do not want their private numbers to ever be revealed. This suggests yet
another real-life interpretation of a “dummy”, where he is a mediator between
two parties negotiating a settlement.

Thus, let A (Alice) and B (Bob) be two “real” parties, and D (Dummy) the
“dummy”. Suppose A’s number is 11, and B’s number is no.

3.1. The protocol (comparing two numbers)

1. A splits her number n; as a difference n; = nf —n; . She then sends n|
to B.
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2. B splits his number n9 as a difference ny = n; — n, . He then sends ny,
to A.

3. A sends nf + ngy toD.
4. B sends nj +nj toD.

5. D subtracts (ng + ny ) from (nf + n;) to get ny — na, and announces
whether this result is positive or negative.

Remark 1. Perhaps a point of some dissatisfaction in this protocol could be the
fact that the “dummy” ends up knowing the actual difference ny; — no, so if
there is a leak of this information to either party, this party would recover the
other’s private number n;. This can be avoided if n; and no are represented
in the binary form and compared one bit at a time, going left to right, until
the difference between bits becomes nonzero. However, this method, too,
has a disadvantage: the very moment the “dummy” pronounces the difference
between bits nonzero would give an estimate of the difference n, — no to the
real parties, not just to the “dummy”.

We note that the original solution of the “two millionaires problem” given
in [19], although lacks the elegance of our scheme, does not involve a third
party, whereas our solution does. On the other hand, the solution in [19] uses
encryption, whereas our solution does not, which makes it by far more efficient.
Finally, we mention that since our paper [13] was published, we have come up
with several other solutions of the “two millionaires problem” without using
either one-way functions or a dummy [14], [11]. Some of those solutions use
simple laws of (classical) physics instead.

4. Secure computation of symmetric functions

In this section, we show how our method can be easily generalized to allow
secure computation of any expression of the form Zle n;, where n; are
parties’ private numbers, k is the number of parties, and » > 1 an arbitrary
integer. We simplify our method here by removing the “noise”, to make the
exposition more transparent. Otherwise, the protocol is the same as the protocol
for secure computation of a sum in Section 2.
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4.1. The protocol (computing the sum of powers)
1. P initiates the process by sending a random element ng to P».

2. Each P;, 2 < i < k — 1, does the following. Upon receiving an element
m from P;_1, he adds his n} to m and sends the result to ;1.

3. Py adds his nj, to whatever he has received from FP;_; and sends the result
to P.

4. Pj subtracts (ng — n}) from what he got from Py; the result now is the
sumofalln}, 1 <i < k.

Now that the parties can securely compute the sum of any powers of their n;,
they can also compute any symmetric function of n;. However, in the course of
computing a symmetric function from sums of different powers of n;, at least
some of the parties will possess several different polynomials in n;, so chances
are that at least some of the parties will be able to recover at least some of the
n;. On the other hand, because of the symmetry of all expressions involved,
there is no way to tell which n; belongs to which party.

4.2. Open problem

Now it is natural to ask:

Problem 1. What other functions (other than the sum and the product) can be
securely computed without revealing intermediate results to any party?

To be more precise, we note that one intermediate result is inevitably revealed
to the party who finishes computation, but this cannot be avoided in any
scenario. For example, after the parties have computed the sum of their private
numbers, each party also knows the sum of all numbers except his own. What
we want is that no other intermediate results are ever revealed.

To give some insight into this problem, we consider a couple of examples
of computing simple functions different from the sum and the product of the
parties’ private numbers.

Example 2. We show how to compute the function f(n1,ng,ng) = ning +
nang in the spirit of the present paper, without revealing (or even computing)
any intermediate results, i.e., without computing 1119 or nans.

1. P initiates the process by sending a random element ng to Ps.
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2. P3 adds his n3 to ng and sends ng + ng to P;.
3. P adds his n to ng + n3 and sends the result to Ps.

4. Ps subtracts ng from ng + ng + n; and multiplies the result by ng. This
iS nOW n1ng + nans.

Example 3. The point of this example is to show that functions that can be
computed by our method do not have to be homogeneous (in case the reader
got this impression based on the previous examples).

The function that we compute here is f(n1,n2,n3) = ning + g(ns), where
g is any computable function.

1. P initiates the process by sending a random element ag to Ps.
2. P, multiplies ag by his ny and sends the result to Ps.
3. P3; multiplies agng by a random element ¢y and sends the result to P;.

4. P; multiplies agnacg by his n1, divides by ag, and sends the result, which
is n1nacg, back to Ps.

5. Ps divides ninacy by ¢o and adds g(ng), to end up with nyngs + g(ns).

Note that in this example, the parties used more than just one loop of trans-
missions in the course of computation. Also, information here was sent “in
both directions” in the circuit.

Remark 2. Another collection of examples of multiparty computation without
revealing intermediate results can be obtained as follows. Suppose, without
loss of generality, that some function f(ni,...,ny) can be computed by our
method in such a way that the last step in the computation is performed by
the party Py, i.e., P; is the one who ends up with f(ny,...,ng) while no
party knows any intermediate result g(ny, ..., ng) of this computation. Then,
obviously, P; can produce any function of the form F'(ny, f(ni,...,nx)) (for
a computable function F') as well. Examples include n] 4 ning - - - ng for any
r > 0; nf + (ning + n3)® forany r, s > 0, etc.
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5. Mental poker

“Mental poker” is the common name for a set of cryptographic problems that
concerns playing a fair game over distance without the need for a trusted third
party. One of the ways to describe the problem is: how can 2 players deal cards
fairly over the phone? Several protocols for doing this have been suggested,
including [18], [5], [9] and [1]. As with bit commitment, it is rather obvious that
fair card dealing to two players over distance is impossible without a one-way
function, or even a one-way function with trapdoor. However, it turns out to be
possible if the number of players is at least 3, assuming, of course, that there
are secure channels for communication between at least some of the players. In
our proposal, we will be using k secure channels for £ > 3 players Py, ..., Pk,
and these k channels will be arranged inacycle: P, - P, — ... — P, — Pi.

To begin with, suppose there are 3 players: P;, P», and P3 and 3 secure
channels: P, - P, —» P3 — P;.

The first protocol, Protocol 1 below, is for distributing all integers from 1 to
m to the players in such a way that each player gets about the same number of
integers. (For example, if the deck that we want to deal has 52 cards, then two
players should get 17 integers each, and one player should get 18 integers.) In
other words, Protocol 1 allows one to randomly split a set of m integers into 3
disjoint sets.

The second protocol, Protocol 2, is for collectively generating random inte-
gers modulo a given integer M. This very simple but useful primitive can be
used: (i) for collectively generating, uniformly at random, a permutation from
the group S,,,. This will allow us to assign cards from a deck of m cards to the
m integers distributed by Protocol 1; (ii) introducing “dummy” players as well
as for “playing” after dealing cards.

5.1. Protocol 1

For notational convenience, we are assuming below that we have to distribute
integers from 1 to 7 = 3s to 3 players.

To begin with, all players agree on a parameter N, which is a positive integer
of a reasonable magnitude, say, 10.

1. each player P; picks, uniformly at random, an integer (a “counter”) c;
between 1 and IV, and keeps it private.
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8.

P starts with the “extra” integer 0 and sends it to Ps.

. P» sends to Pj either the integer m he got from P;, or m + 1. More

specifically, if P> gets from P; the same integer m less than or equal to
co times, then he sends m to Ps3; otherwise, he sends m + 1 and keeps m
(i.e., in the latter case m becomes one of “his” integers). Having sent out
m + 1, he “resets his counter”, i.e., selects, uniformly at random between
1 and N, a new cy. He also resets his counter if he gets the number m for
the first time, even if he does not keep it.

. P3 sends to P either the integer m he got from P, or m + 1. More

specifically, if P; gets from P» the same integer m less than or equal to
c3 times, then he sends m to P;; otherwise, he sends m + 1 and keeps m.
Having sent out m + 1, he selects a new counter c3. He also resets his
counter if he gets the number m for the first time, even if he does not keep
it.

. P sends to P, either the integer m he got from P3, or m + 1. More

specifically, if P, gets from P the same integer m less than or equal to
c1 times, then he sends m to Ps; otherwise, he sends m + 1 and keeps m.
Having sent out m + 1, he selects a new counter c;. He also resets his
counter if he gets the number m for the first time, even if he does not keep
it.

This procedure continues until one of the players gets s integers (not
counting the “extra” integer 0). After that, a player who already has s
integers just “passes along” any integer that comes his way, while other
players keep following the above procedure until they, too, get s integers.

. The protocol ends as follows. When all 3s integers, between 1 and 3s,

are distributed, the player who got the last integer, 3s, keeps this fact to
himself and passes this integer along as if he did not “take” it.

The process ends when the integer 3s makes /N + 1 “full circles”.

We note that the role of the “extra” integer O is to prevent P; from knowing
that P, has got the integer 1 if it happens that co = 1 in the beginning.

We also note that this protocol can be generalized to arbitrarily many players
in the obvious way, if there are k£ secure channels for communication between
k players, arranged in a cycle.
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5.2. Protocol 2

Now we describe a protocol for generating random integers modulo some
integer M collectively by 3 players. As in Protocol 1, we are assuming that
there are secure channels for communication between the players, arranged in
acycle.

1. P, and Ps uniformly at random and independently select private integers
ng and ng (respectively) modulo M.

2. P, sends ny to Py, and P3 sends n3 to P;.
3. P; computes the sum m = ng + n3 modulo M.

Note that neither P» nor P5 can cheat by trying to make a “clever” selection
of their n; because the sum, modulo M, of any integer with an integer uniformly
distributed between 0 and M — 1, is an integer uniformly distributed between
Oand M — 1.

Finally, P cannot cheat simply because he does not really get a chance: if
he miscalculates ny + ng modulo M, this will be revealed at the end of the
game. (All players keep contemporaneous records of all transactions, so that
at the end of the game, correctness could be verified.)

To generalize Protocol 2 to arbitrarily many players P, ..., Py, k > 3, we
can just engage 3 players at a time in running the above protocol. If, at the
same time, we want to keep the same circular arrangement of secure channels
between the players that we had in Protocol 1, i.e., P, - P, — ... P, — Py,
then 3 players would have to be P; 1, P;, P; 12, where ¢ would run from 1 to &,
and the indices are considered modulo k.

Protocol 2 can now be used to collectively generate, uniformly at random,
a permutation from the group S,,. This will allow us to assign cards from
a deck of m cards to the m integers distributed by Protocol 1. Generating a
random permutation from S;,, can be done by taking a random integer between
1 and m (using Protocol 2) sequentially, ensuring that there is no repetition.
This “brute-force” method will require occasional retries whenever the random
integer picked is a repeat of an integer already selected. A simple algorithm
to generate a permutation from .S,,, uniformly randomly without retries, known
as the Knuth shuffle, is to start with the identity permutation or any other
permutation, and then go through the positions 1 through (m — 1), and for
each position ¢ swap the element currently there with an arbitrarily chosen
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element from positions ¢ through m, inclusive (again, Protocol 2 can be used
here to produce a random integer between ¢ and m). It is easy to verify that any
permutation of m elements will be produced by this algorithm with probability
exactly %, thus yielding a uniform distribution over all such permutations.

After this is done, we have m cards distributed uniformly randomly to the
players, i.e., we have:

Proposition 1. Ifm cards are distributed to k players using Protocols 1 and 2,
then the probability for any particular card to be distributed to any particular
player is %

5.3. Using “dummy” players while dealing cards

We now show how a combination of Protocol 1 and Protocol 2 can be used
to deal cards to just 2 players. If we have 2 players, they can use a “dummy”
player (e.g. a computer), deal cards to 3 players as in Protocol 1, and then just
ignore the “dummy”’s cards, i.e., “put his cards back in the deck”. We note
that the “dummy” in this scenario would not generate randomness; it will be
generated for him by the other two players using Protocol 2. Namely, if we
call the “dummy” Ps, then the player P, would randomly generate c3; between
1 and N and send it to P3, and P» would randomly generate c32 between 1
and N and send it to P3. Then P3; would compute his random number as
c3 = c31 + c32 modulo V.

Similarly, “dummy” players can help k “real” players each get a fixed number
s of cards, because Protocol 1 alone is only good for distributing all cards in the
deck to the players, dealing each player about the same number of cards. We
can introduce m “dummy” players so that (m + k) - s is approximately equal
to the number of cards in the deck, and position all the “dummy” players one
after another as part of a circuit P, — P, — ... P4 — Pi. Then we use
Protocol 1 to distribute all cards in the deck to (m + k) players taking care that
each “real” player gets exactly s cards. As in the previous paragraph, “dummy”
players have “real” ones generate randomness for them using Protocol 2.

After all cards in the deck are distributed to (m + k) players, “dummy”
players send all their cards to one of them; this “dummy” player now becomes
a “dummy dealer”, i.e., he will give out random cards from the deck to “real”
players as needed in the course of a subsequent game, while randomness itself
will be supplied to him by “real” players using Protocol 2.
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6. Summary of the properties of our card dealing (Pro-
tocols 1 and 2)

Here we summarize the properties of our Protocols 1 and 2 and compare, where
appropriate, our protocols to the card dealing protocol of [1].

1. Uniqueness of cards. Yes, by the very design of Protocol 1.

2. Uniform random distribution of cards. Yes, because of Protocol 2; see
our Proposition 1 in Section 5.2.

3. Complete confidentiality of cards. Yes, by the design of Protocol 1.

4. Number of secure channels for communication between k£ > 3 players:
k, arranged in a cycle.
By comparison, the card dealing protocol of [1] requires 3k secure channels.

5. Average number of transmissions between £ > 3 players: O(%mk),
where m is the number of cards in the deck, and N ~ 10. This is because in
Protocol 1, the number of circles (complete or incomplete) each integer makes
is either 1 or the minimum of all the counters ¢; at the moment when this
integer completes the first circle. Since the average of c¢; is at most %, we get
the result because within one circle (complete or incomplete) there are at most
k transmissions. We note that in fact, there is a precise formula for the average

Nk
of the minimum of ¢; in this situation: ZJA:,k J , which is less than % ifk > 2.

By comparison, in the protocol of [1] there are O(mk?) transmissions.

6. Total length of transmissions between © > 3 players: %mk - logym
bits. This is just the average number of transmissions times the length of a
single transmission, which is a positive integer between 1 and m.

By comparison, total length of transmissions in [1] is O(mk? log k).

7. Computational cost of Protocol 1: negligible (because computation
amounts to selecting random integers from a small interval).

By comparison, the protocol of [1] requires computing products of up to k
permutations from the group Sy to deal just one card; the total computational
cost therefore is O(mk? log k).
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7. Secret sharing

Secret sharing refers to method for distributing a secret amongst a group of
participants, each of whom is allocated a share of the secret. The secret can be
reconstructed only when a sufficient number of shares are combined together;
individual shares are of no use on their own.

More formally, in a secret sharing scheme there is one dealer and % players.
The dealer gives a secret to the players, but only when specific conditions are
fulfilled. The dealer accomplishes this by giving each player a share in such a
way that any group of ¢ (for threshold) or more players can together reconstruct
the secret but no group of fewer than ¢ players can. Such a system is called a
(t, k)-threshold scheme (sometimes written as a (k, t)-threshold scheme).

Secret sharing was invented by Shamir [17] and Blakley [2f], independent of
each other, in 1979. Both proposals assumed secure channels for communica-
tion between the dealer and each player. In our proposal here, the number of
secure channels is equal to 2k, where & is the number of players, because in
addition to the secure channels between the dealer and each player, we have k
secure channels for communication between the players, arranged in a cycle:
P1—>P2—>...—>Pk—>P1.

The advantage of our scheme over Shamir’s and other known secret sharing
schemes is that nobody, including the dealer, ends up knowing the shares (of the
secret) owned by any particular players. The disadvantage is that our scheme
is a (k, k)-threshold scheme only.

We start by describing a subroutine for distributing shares by the players
among themselves. More precisely, k& players want to split a given number in
a sum of k numbers, so that each summand is known to one player only, and
each player knows one summand only.

7.1. The subroutine (distributing shares by the players among them-
selves)

Suppose a player P; receives a number M that has to be split in a sum of %
private numbers. In what follows, all indices are considered modulo k.

1. P, initiates the process by sending M —m; to P, 1, where m; is arandom
number (could be positive or negative).
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2. Each subsequent P; does the following. Upon receiving a number m from
Pj_1, he subtracts a random number m; from m and sends the result to
Pj 1. The number m; is now P;’s secret summand.

3. When this process gets back to P;, he adds m; to whatever he got from
P;_q; the result is his secret summand.

Now we get to the actual secret sharing protocol.

7.2. The protocol (secret sharing (%, k)-threshold scheme)

The dealer D wants to distribute shares of a secret number N to k players F;
so that, if P; gets a number s;, then Zle s; = N.

1. D arbitrarily splits IV in a sum of k integers: N = Zle n;.

2. The loop: at Step ¢ of the loop, D sends n; to F;, and P; initiates the
above Subroutine to distribute shares n;; of n; among the players, so that

S g = i

3. After all k steps of the loop are completed, each player P; ends up with &k
numbers 7 j; that sum up to s; = Z;‘;l nj;. It is obvious that Zle 5; =
N.
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Abstract: Originally, modern symbolic logic was supposed to be a disambiguated
and streamlined version of the logic of natural language. It has nevertheless failed to
provide a full account of several telltale semantical phenomena of ordinary language,
including Peirce’s paradox, “donkey sentences” and more generally conditionals and
different kinds of anaphora. It is shown here by reference to examples how these
phenomena can be treated by means of IF logic and its semantical basis, game-
theoretical semantics. Furthermore, methodological questions like compositionality
and logical form will be discussed.

1. Frege-gate

The relations between symbolic logic and linguistic theorizing have been (and
still are) complicated, close and confused. Symbolic logic was first thought,
typically if not universally, as a minor regimentation and smoothlining of
ordinary language. In another direction, mathematicians were formulating
much of their reasoning in terms of ordinary prose, not in terms of manipulation
of equations or other complexes of symbols. In fact mathematicians like Cauchy
or Weierstrass were using — as they had to do — an explicit but unformalized logic
of quantifiers in the guise of the so-called epsilon-delta technique, expressed
in such ordinary language terms as “given such-and-such a number”, “one can
find” etc. (See here and in the following Hintikka [3}5])).

But then a huge scientific scandal, a veritable Frege-gate, took place without
anyone’s noticing. Frege undertook to formalize our entire logic, to present a
notation (a Schrift) for all our concepts. Yet he failed to understand his fellow
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mathematicians’ quantifier logic, and instead gave his followers a flawed logic
that is only a part of the full story. Subsequent logicians unfortunately followed
Frege and used this defective logic as their basic working logic. This alone
would not been serious, for Frege’s logic of quantifiers (by which I mean what
is nowadays called first-order logic) is correct as far as its expressive powers
go. The catastrophic mistake the logicians made was to think in effect that
it is the full logic of quantifiers. The first specific disaster this caused was
the bunch of paradoxes of set theory, which prompted the entire crisis of the
foundations of set theory. This in turn led to further catastrophes, such as
Zermelo-Fraenkel first-order set theory and the wishful belief that such results
as Godel’s, Tarski’s or Paul Cohen’s tell us something about the limitations of
logic and axiomatization or about the continuum hypothesis (Hintikka [4]).

This “Frege-gate” scandal came to light only recently when it was pointed out
that the logic that mathematicians were using already hundred years ago was
not the received first-order logic, but the richer logic that had been meanwhile
rediscovered and systematized under the title “independence-friendly logic”
(IF logic). (see e.g. Mann et al. [7]]). However, the Frege-gate scandal has not
hit headlines yet even in logic journals.

2. IF logic and linguistics

In this paper, I will discuss one aspect of the new problem situation, viz.,
its impact on linguistic theorizing. That there must be such an impact is
obvious. To mention only one indication, at one time Chomsky thought that
his syntactical counterparts to logical forms, the LF’s, were essentially like
formulas of (the received) first-order logic (see e.g. Chomsky, [[1, p. 197]; [2|
p. 67]). If they are not adequate representations of logical and, a fortiori,
semantical forms of ordinary language sentences, we do not only need a better
logic, but also a better syntactical theory.

Now IF logic, at least in its simplest version, has been around for a while
and has even become an established research area in logic. Hence there has in
fact been some discussion of its role in natural language. Much ingenuity has
been expended on the first examples of purportedly IF sentences in ordinary
language. They have been mostly so-called branching quantifier sentences like
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(Vx)(Jy)
2.1) F(z,y,z,u).
(V2)(Fu)

Its meaning can be expressed by the IF sentence
22) (Va)(V2)(Ey /V2)(Gu /Va) Fx,y, 2 u).

This meaning cannot be expressed by a first-order quantifier sentence without
the independence indication slash.

Examples from ordinary language were presented and discussed. An
example was

(2.3) Every villager has a friend and every townsman has a relative who know

each other.

Here choice of a friend is independent of the choice of a relative and vice versa.

Such examples are sufficiently complicated for confusing some philosophers.
However, it has turned out that the examples are only the tip of an iceberg.
Other examples look syntactically simple but still turn out to be semantically
rather complex, e.g.

(2.4) Everybody has a different friend.

Its logical form can be seen to be

(2.5) (‘v’xl)(V$2)(E|y1 /\V/:L‘Q)(Hyg /\V/."L‘l)(((l‘l = 1'2) Ad
(y1 = y2)) & F(y1, x1) & F(y2, 22)).

What was explained in these early linguistic applications of IF logic are
particular examples, rather than general semantical or syntactical phenomena.
In this paper, we concentrate on one particular relatively unexplored seman-
tical phenomenon, viz., informational independence involving propositional
connectives instead of (or in addition to) quantifiers.
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3. Peirce’s paradox

Ironically, the shortcomings of the usual (“Fregean”) first-order logic were
known already at the time of its formulation to Frege’s co-inventor Charles S.
Peirce (see Peirce [8, 4.546 and 4.580]). He pointed out a problem about the
following pair of English sentences:

(3.1) Someone is such that, if he fails in business, he commits suicide.

(3.2) Someone is such that if everybody fails in business, he commits suicide.
Their respective logical forms seem to be

(3.3) (Fx)(F(z) > S(x)),

(3.4)  (Fz)((Vy)F(y) > S(x)).

Here (3.4) is equivalent to

(3.5) (Fz)((Fy) ~ F(y) v S(x)).

But something is paradoxical here. Formulas (3.1) and (3.2) obviously mean
something different whereas, as Peirce pointed out, in the usual first-order logic
(3.3) and (3.4) are logically equivalent.

Various ad hoc explications have been proposed, but they remain just that:
adhockey. Yet game-theoretical semantics yields a diagnosis of the problem
without any further assumptions or considerations. The problem is how the
conditional (3.4) can be as strong as (3.3).

An answer is found by examining the meaning of (3.1) or (3.2) in
game-theoretical terms. What (3.5) says is that it is true. That truth
means in the existence of a winning strategy for the verifier (“myself”)
in the semantical game associated with (3.2). The first part of this strat-
egy is a specification of the value ¢ of x in (3x). In order for it to be part
of a winning strategy, there has to be a similar winning strategy in the game with

(3.6) (Jy) ~ F(y) v S(c).
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The next step in a play of the game is the verifier’s choice of one of the
disjuncts. Whether or not this makes (3.6) true does depend on what the world
is like.

If the world is such that everybody fails in business, the right choice of c is
one of the people who commit suicide. But the world might be such that there
are no such persons, so that the choice of x = ¢ must make the other disjunct
true, in other words must satisfy ~ F'(x). This is guaranteed only if x satisfies
~ F(x), in other words if it is a case that

3.7 ~S(z) D~ F(x).
In other words only
(3.8) F(x) D S(x).

In that case, (3.2) can be true only if its antecedent is false, in other words
only if not everybody fails in business. Hence the choice of x must provide
a counter-example to everybody’s failing in business. And the choice x = ¢
provides such an counter-example only if

(3.9) ~ S(c) D~ F(c).

The existence of such a counter-example means the truth of (3.3). Hence
(the truth of) (3.5) implies the (the truth of) (3.3), which is Peirce’s paradox.

In still other words, (3.3) is true only if there is an = such that if he fails
in business, he commits suicide. Depending on what the world is like in
(3.1) the verifier might have to choose ~ F'(c) or S(c). In other words, ¢
depends on the world. This means that the x in (3.5) or (3.4) is not the same
individual independently of what the world is like. It is not really a choice of
an “individual” as is required in (3.1) and (3.2).

4. Peirce’s paradox and independence
This is clear interpretationally. But what does it mean in terms of the seman-

tical games that convey our sentences their meaning? What is the right logic
translation of (3.2)?
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The analysis carried out above shows that the choice of a disjunct (“of
a world”) must be neutral with respect to the choice of objects. Hence the
solution is to make V independent of (3z). Instead of (3.4) one should have

@.1)  (B2)((vy) F(y)(v/3z) S(2)).

Thus the true representation of (3.2) is not (3.4) but (4.1). It cannot be
formulated in IF logic in the usual narrow sense, but it can be formulated if this
logic is amplified by allowing extra independencies between quantifiers and
connectives. This opens up a new dimension of the entire hierarchy of different
logics, besides further illustrating the inadequacy of Frege’s logic.

5. Hierarchies of IF logics

In IF logic in the narrowest sense — which is the one in which it currently
being used in the literature — the only extra kind of independence allowed is
an independence of existential-force quantifiers of universal-force quantifiers
within the formal scope of which they occur. (Quantifiers, whose scopes are not
nested are automatically independent.) Only strong negations, ~, are admitted.
If we admit sentence-initial contradictory negations, —, we obtain richer and
more satisfactory logic which is usually called extended independence-friendly
logic (EIF) logic. It should perhaps be considered as the “real” basic IF logic. If
we allow arbitrary extra independencies (existential quantifiers on existentials,
universal quantifiers on universals, and universal quantifiers on existentials) we
obtain a still much stronger logic that might be called generalized IF logic.

Here we are dealing with yet another way of enriching the basic or extended
IF logic. This way is to allow extra independencies between quantifiers and
propositional connectives. From the Peircean example and from others it is
seen that this dimension of expressive enrichment is independent of quantifier
independencies.

6. Simple donkey sentences

This new dimension also facilitates analysis of many interesting linguistic
phenomena. One instructive example is constituted by the so-called donkey
sentences. The interpretation of these sentences is a routine question discussed
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in the linguistic literature on definite and indefinite pronouns. The simplest
example has the same form as the following sentence:

(6.1) If Peter owns a donkey, he beats it.
This is prima facie of the following form

(6.2) (Fz)(D(x) & O(p,z)) D B(p,x).
This would have to be equivalent with

6.3) (Vz)(~ D(z)V ~ O(p,x)) V B(p, z).

But (6.2) is ill-formed in that the last x is not bound to (is outside the scope
of) (3z). But the alternative

(64) (32)((D(x) & O(p,x)) > B(p,x))

says only that there is at least one animal such that if it is a donkey and is
owned by Peter, he beats it. The true semantical form of (6.1) seems to be
intuitively

65 (v2)((D(x) & O(p,)) > B(p,)).

But why? How come (6.1) should be translated as (6.5)? An indefinite article
has the force of an existential quantifier. So why does it seem to have here the
force of an universal one?

The answer can be obtained by analyzing the meaning of (6.1) the same way
as the meaning of Peirce’s paradoxical sentence (3.1) was analyzed earlier.
The crucial point is that the choice of z must be independent of the choice
between different relevant semantics codified in the second V in (6.3). The
solution is now to make the quantifier and the connective V independent of
each other. Here the covert logic translation of (6.1) will be

(6.6) (3x)(D(x) & O(p,x))(> /3x)B(p, x)
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which is equivalent with
6.7)  (Vz)(~ D(x)V ~ O(p,z))(V /Vx)B(p, ).

When is there a winning strategy for the verifier in the game with (6.7), as (6.7)
says? In that strategy, since V is independent of (Vz), the falsifier chooses a
value d for x. The resulting sentence

(6.8) (N D(d)\/ ~ O(pa d)) v B(pa d)

must be true, i.e. the verifier must be able to choose a true disjunct. Such a
choice is possible for any d if it is the case that for any donkey d owned by Peter
it is true that he beats it i.e. that B(p, d) is true. But this is obviously just what
(6.1) says.

7. Complex donkey sentences

This shows that the extensive literature designed to account for donkey sen-
tences is, if not wrong, then at least redundant. Many purported explanations
do not work for more complex donkey sentences like

(7.1) Ifyou give each child a gift for Christmas, some child will open it to-day.

Here even a merely linguistic account of the role of the anaphoric phenomenon
“it” is very tricky. No usual IF logic expression captures the meaning of (7.1)
either. Yet its logic translation in terms of connective independence is possible.

The right translation is perhaps best seen if we first eliminate the existential
quantifier in terms of its Skolem function and express (7.1) as

(7.2)  (Bg)(vz)(G(z,9(x)) > (32)0(z,9(2))).

This is a second-order sigma one-one sentence. It is possible to translate
such sentences to the corresponding IF first-order language, but not without
independent connectives. Here is a translation:

(7.3) (V1) (V2) Byr /Va2)(Fyz /Vor) ((z1 = 22) D (y1 = 32)) &



IF Logic and Linguistic Theory 91

G(x1,11) & G(x2,12) (D /Va1,V22)(32) (2 = z1) V (2 = x3) D
(O(z,41) & O(2,42)))-

This explains the meaning of (7.1).

8. Conditional reasoning

This is in explicit terms what the idea of “remembering” a strategy used in
earlier subgame amounts to.

In general we have found an important distinction. It may be called a dis-
tinction between deductive reasoning and conditional reasoning. A deductive
conclusion B from a premise A is a proposition that is true as soon as A is true.
In the language of possible world semantics, B is true in each world in which
A is true.

But the premise A does more than put forward a truth condition. It presents a
situation, a fragment of one particular possible world, maybe a world in which
Peter owns a donkey. We can then ask what else must be true in that particular
world. This is a different question from asking what is true of all the worlds
in which the premise A is true, for instance all worlds in which Peter owns
some donkey or other. We are asking about the fate of that particular donkey
postulated by the premise. Does Peter beat it?

What has been shown in this paper is how this question can be spelled out in
sample cases by means of quantifiers independent of propositional connectives.
These independencies are the gist of conditionality. It cannot be captured by
ordinary “conditional” sentences of the form (A D B) or by ordinary logical
consequence relations. It is also the gist of the linguistic phenomenon of
conditionality.

What is especially striking in all these examples is that the extra-connective-
independence is not just one formally possible explanation of certain semantical
phenomena, but the overwhelmingly natural one. This naturalness is easily
converted into generality. When (in game-theoretical terms) a quantifier invites
a player to choose an individual, the choice must not depend on what there may
turn up later in the game. Thus the normal logic translation of disjunctive “or”
appears to be, not V, but (V /Qqx1, Q222, . . .), Where (Q;x;) are the quantifiers
within whose scope V occurs in the translation.
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9. Conditionality explained

These case studies illustrate ipso facto some of the explanatory possibilities in
linguistic theorizing that are opened here. Consider, for example, the equiva-
lence of (7.1) and (7.2). I have much earlier presented a semi-formal analysis
of conditionals in a game-theoretical framework (Hintikka & Kulas [6]]). It
worked, but it was not purely logical. I had to resort to pre-formal ideas, e.g.
the idea that a player in a semantical game could “remember” a strategy from
another subgame. Such semiformal ideas can now be replaced by purely logical
ones. For instance, look at (7.2). The Skolem function g there codifies (a part
of a) strategy. This is used in a subgame with the antecedent of (7.1). From
(7.2) one can see how it figures also as a strategy function (partial) in a game
with the consequent.

In (7.2), this transfer of a strategy becomes the possibility of making use of
the connection between x and y (subscripts do not matter) that was introduced
in the antecedent also in the consequent. This is precisely what is made possible
by the independence of V of the quantifiers (Vz1), (Vx2).

This shows how by means of independences involving connectives we can
capture the very conditionality of conditionals. This means that by means of
such independences we can develop a viable general theory of conditionals.

10. Explaining anaphora

Even more generally much of any first-order logic can be thought as frame-
work for a semantical representation of such phenomena as co-reference and
anaphora. Not all such logics can be applied directly to the analysis of these
phenomena in natural languages, mainly owing to the syntactical differences
between them and natural language.

Certain general advantages of the kind of treatment of anaphora based on
IF logic over some typical linguistic theories can presently be pointed out.
Linguistic approaches to anaphora and co-reference often rely on the head-
anaphora relation as one of their explanatory concepts. Of course linguists are
aware that there are examples where there is no head to be found for a given
anaphora or where the head and the anaphora cannot be said to be literally
co-referential, that is, refer to one and the same entity. But such cases are
typically considered somehow exceptional, not automatically explainable by



IF Logic and Linguistic Theory 93

the normal operation of anaphora.

We have already analyzed such an apparently anomalous case. Inthe complex
donkey sentence (7.1), the obviously anaphoric pronoun “it” is not literally co-
referential with any other phrase in the sentence. (It is not a “pronoun of
laziness” either.) Yet (7.1) has an explicit logical form (7.2).

An explanation is implicit in what has been said earlier. We can interpret
“it” because it is co-referential with an object that is functionally determined
by other referring phrases in the same sentence or the same discourse. The
functions that effect this determination are sometimes expressed in the sentence
in question by a separate phrase. But they need not be. As we saw in our
analysis of complex donkey sentences, existential quantifiers can introduce such
dependencies through their Skolem functions. Sometimes the dependence is
mediated by background information that the actual or hypothetical speaker if
assumed to possess.

Hence a purely syntactical approach to the phenomena of anaphora and co-
reference, such as Chomsky’s government and binding theory, is bound to be
incomplete account these phenomena.

11. Limits of compositionality

There is another general methodological moral in the story of this paper. The
mode of operation of independent connectives illustrates a phenomenon that
is as prevalent as it is important both in natural and formal languages. It
is non-compositionality. (For a collection of articles on different aspects of
compositionality, see Werning et al. [9])[1]

Compositionality is rightly understood tantamount to semantical context-
independence. Now we have seen in this paper how the logical force of a
connective is different according to what quantifiers in its context it depends
on. Of course a similar non-compositionality is obvious (though it was not to
Frege) already in the dependence of quantifiers on other quantifiers. The main
reason why this context dependence has not been emphasized more is that in

IT take this opportunity to correct a group of mistakes. On page 10 the authors say that
Hodges has refuted “Hintikka’s claim that Independence-Friendly logic is non-compositional”.
I have never made such a claim simpliciter, and on the contrary suggested a way in which any
logic can in principle be given a compositional “semantics”. What is the case (also according
to Hodges) is that IF first-order logic cannot have a compositional semantics on the first order
level.
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the received first-order logic quantificational dependencies are expressed by
the syntactical device of nesting scopes. But the only thing the necessity of
so doing shows is the inadequacy of traditional first-order logic in semantic
theorizing.
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In the paper Hintikka gives various arguments for the need of an extension
of Independence-Friendly logic (IF-logic) with informationally independent
disjunctions, i.e. connectives of the form

(V/Vx)

that I will render more simply as (V /). Actually such an extension has been
studied in Sandu and Viaindnen [4]], Hella and Sandu [2] and Mann, Sandu
and Sevenster [3] but no application to natural language has been given. Thus
I welcome Hintikka’s endeavour. He introduces the case for informationally
independent connectives by first offering a solution to what he calls Peirce’s
paradox which consists in the equivalence of

Hintikka compares

(3.1)  Someone is such that if he fails in business, he commits suicide.
with
(3.2)  Someone is such that if everybody fails in business, he commits suicide.
when they are represented in ordinary first-order logic as
Jx(F(z) = S(x))

and
Jz(VyF(y) — S(z))

© The Author(s) and College Publications 2017
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respectively. (I will use ‘—’ instead of Hintikka’s ‘D’). Hintikka analyzes
the equivalence between these two sentences in game-theoretical semantics.
This is a good idea, although I prefer a more straightforward game-theoretical
argument than the one he offers. We establish the logical equivalence between

Az (—F(z) vV S(x))

and
Jx(3y—F(y) v S(z))

by showing that the Verifier has a winning strategy in one game if and only if she
has a winning strategy in the other game (on any underlying model). As usual,
these claims are established by a copy cat strategy argument. (Again a notational
point: Hintikka makes a distinction between game-theoretical negation that he
symbolizes by ‘~’ and contradictory negation that he symbolizes by ‘—’. I will
simply use the latter given that for ordinary first-order formulas the two are
equivalent.)

Suppose there is a winning strategy for the Verifier in the first game. It
consists of the choice of an individual, = a and the choice of a disjunct,
left or right. Given that the strategy is winning, then, if left is chosen, a must
satisfy —F'(z) and if right is chosen, then = must satisfy S(z). Here is a
winning strategy for Verifier in the second game. If in the first game Verifier
chooses left, then in the second game she chooses * = a, then left, and then
y = a. Given that a satisfies —F'(x) then this is a winning strategy. If in
the first game Verifier chooses right, then in the second game Verifier chooses
x = a then right. Given that a satisfies S(x), then this is a winning strategy in
the second game.

For the converse, suppose the Verifier has a winning strategy in the second
game. It is: choose z = a; then choose left or right. If left, choose y = b; if
right, do nothing. Given that this is a winning strategy, then if right is chosen,
x must satisfy S(x). If left is chosen, then b must satisfy —=F(y). Here is a
winning strategy for Verifier in the first game. If Verifier chooses right in the
second game, then choose * = a and then right in the first game. Then a
satisfies S(x) and thus this is a winning strategy. If Verifier chooses left and
then y = b in the second game, then in the first game she chooses x = b and
then left. Clearly given that b must satisfy —F'(y) this is a winning strategy.

Actually 3z (Jy—F(y) vV S(x)) is logically equivalent with

(3y)~F(y) v IzS(z)
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and thus “Peirce’s paradox” is seen to be an instance of the more general law
Jx(A(z) V B(z)) = 3z A(z) V yB(y) = 3zA(x) V FzB(z).

Hintikka’s suggestion in the paper is to block the paradox by blocking the
above equivalence in this particular case, that is, by taking the logical form of
(3.2) to be (there is a misprint in the text):

Fz(=VyF(y) (V/z) S(x))

that is
Jz(Fy~F(y) (V/z) S(x))

where (V/x) means that when Verifier chooses a disjunct, she does not know the
value chosen earlier for z. Now apart from creating interpretational problems
of its own, the proposal will not help him. Informally the proposal says that the
choice of a disjunct should take place before the choice of a value of = takes
place. But this renders the last sentence logically equivalent with

Jy—F(y) vV JzS(x)

which s, as pointed out above, logically equivalent with 3z (—=F'(z)V.S(x)). We
are back to square one! I guess Hintikka has in mind another way to analyze the
informational independence of Verifier of its own move than the one I proposed
(games of imperfect information), that is, a proposal that does not render
Jx(Jy—F(y) (V/x) S(z)) equivalent with Jx(—F (z) vV S(x)). I remember
he once in conversation objected to the equivalence between Jx(Jy/z)r =y
with x3dyx = y which holds in IF-logic. Fausto Barbero [, forthcoming] has
a notion of independence which does not render the two equivalent. It might
be that Hintikka is relying in his proposal on a notion of independence on the
basis of which 3z(A (V/z) B is not equivalent with 3xA V 3z B but this is
something for future work.

Based on his attempted solution to Peirce’s paradox, Hintikka suggests also
a new way to analyze simple donkey sentences like

(6.1)  If Peter owns a donkey, he beats it.
He takes the force of this sentence to be that of

(6.5 Vaz(D(z) AO(p,x)) — B(p,x)).
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He asks: How do we get from (6.1) to (6.5)? One way to proceed is to take
literally the surface structure of (6.1) where the indefinite is in the “scope”
of the implication, and translate the indefinite “a donkey” by an existential
quantifier, as standardly done. The result is, as Hintikka correctly points out:

(6.2)  3xz(D(z) AO(p,x)) = B(p,x)
which is equivalent, as he points out with
(6.3)  Va(=D(z) V-O(p,x))V B(p,z).

But Hintikka is right to point out that (6.2) (and consequently (6.3)) is ill formed
given that the last occurrence of the variable z is not bound. On the other side,
if we try to bind the variable = by the existential quantifier, we get

©6.4)  Fz(D(z) AO(p,x)) = B(p,x))

which, as Hintikka correctly points out, says only that “there is at least one
animal such that if it is a donkey and is owned by Peter, he beats it.” So it
seems we cannot obtained the true logical form of (6.1) which is (6.5).

Hintikka proposes an answer which is to go back to (6.2) and to take the
implication to be independent of the existential quantifier

(6.6) Jx(D(x) ANO(p,x)) (— /3z) B(p, )

or, if we operate instead on (6.3) which he takes to be equivalent to (6.2), he
takes disjunction to be independent of the universal quantifier:

(6.7)  Vz(=D(z)V-O(p,z)) (V/Vz) B(p, ).

We are then told that the existence of a winning strategy for the Verifier in (6.7)
means that for any choice d by the Falsifier, the sentence

(68) (_‘D(d) \ _'O(pa d)) \ B(pa d)

must be true. And this yields (6.5).

Hintikka’s analysis is ingenious but it does not get through, as it stands.
I claim that the independence (— /3x) of implication from the existential
quantifier in (6.6), or, equivalently the independence (V/Vx) of disjunction
from the universal quantifier (6.7), does not make sense. The reason for this,
focusing on the latter, is simply that in IF-logic as it currently stands, for a
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move to be informationally independent from another, the first must be in the
syntactical scope of the second. Or this is not the case in (6.7).

Finally Hitnikka motivates the use of informationally independent disjunc-
tions by its role in the logical representation of complex donkey sentences
like

(7.1)  If you give each child a gift for Christmas, some child will open it
to-day.

that Hintikka represents in second-order logic by

(7.2)  3gVz (G(z, g(x)) = 320(z,9(2))) -

He then tells us that (7.2) can be represented on the first-order level by the IF
sentence (7.3) which involves informationally independent disjunctions.

Hintikka’s claim is not true. (7.3) is a second-order existential formula and as
such known to be equivalent, by standard results of Walkoe [3], to an ordinary
[F-formula which does not involve informationally independent disjunctions.
Let me reproduce the procedure by which the IF-formula is obtained (I am
grateful to Fausto Barbero here).

1. First in (7.2) we push the existential quantifier in front of the conditional
and then Skolemize it:

3f gV (G(z, g(x)) = O(f(2), 9(f(2))))-
2. Next we eliminate the nesting of functions to obtain
f3gvavy(y = f(x) = (G(z,9(x)) = Oy, 9())))-

3. Third we want each function to have a unique set of arguments (so we
replace the second g with a new h):
Jf3gIrVaVy(x =y — g(x) = h(y)A
MMy = (@) = (G(x, 9(x)) = Oy, h(y))))])-

4. Finally we replace each function by its appropriate pair of quantifiers and
obtain the IF-formula which is the logical form of (7.1):

VaVy(Ju/y)(Fv/y, uw)(Fw/z,u,v)(x =y — v = wA
Ay =u = (G(z,v) = Oy, w)))]).
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Abstract: This talk presents foundations of mathematics as a historically variable
set of principles appealing to various modes of human intuition and devoid of any
prescriptive/prohibitive power. At each turn of history, foundations crystallize the
accepted norms of interpersonal and intergenerational transfer and justification of
mathematical knowledge.

Introduction

Foundations vs Metamathematics. In this talk, I will interpret the idea of
Foundations in the wide sense. For me, Foundations at each turn of history
embody currently recognized, but historically variable, principles of organi-
zation of mathematical knowledge and of the interpersonal/transgenerational
transferral of this knowledge. When these principles are studied using the tools
of mathematics itself, we get a new chapter of mathematics, metamathematics.

Modern philosophy of mathematics is often preoccupied with informal in-
terpretations of theorems, proved in metamathematics of the XX—th century, of
which the most influential was probably Godel’s incompleteness theorem that
aroused considerable existential anxiety.

In metamathematics, Godel’s theorem is a discovery that a certain class of
finitely generated structures (statements in a formal language) contains sub-
structures that are not finitely generated (those statements that are true in a
standard interpretation).

It is no big deal for an algebraist, but certainly interesting thanks to a new
context.

© The Author(s) and College Publications 2017
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Existential anxiety can be alleviated if one strips “Foundations” from their
rigid prescriptive/prohibitive, or normative functions and considers various
foundational matters simply from the viewpoint of their mathematical content
and on the background of whatever historical period.

Then, say, the structures/categories controversy is seen in a much more real-
istic light: contemporary studies fuse (Bourbaki type) structures and categories
freely, naturally and unavoidably.

For example, in the definition of abelian categories one starts with struc-
turizing sets of morphisms: they become abelian groups. In the definition
of 2—categories, the sets of morphisms are even categorified: they become
objects of categories, whose morphisms become then the morphisms of the
second level of initial category. Since in this way one often obtains vast mental
images of complex combinatorial structure, one applies to them principles of
homotopy topology (structural study of topological structures up to homotopy
equivalence) in order to squeeze it down to size etc.

I want to add two more remarks to this personal credo.

First, the recognition of quite restrictive and historically changing normative
function of Foundations makes this word somewhat too expressive for its con-
tent. In a figure of speech such as “Crisis of Foundations” it suggests a looming
crash of the whole building (cf. similar concerns expressed by R. Hersh, [8]]).

But, second, the first “Crisis of Foundations” occurred in a very interesting
historical moment, when the images of formal mathematical reasoning and
algorithmic computation became so precise and detailed that they could be,
and were, described as new mathematical structures: formal languages and
their interpretations, partial recursive functions. They could easily fit Bour-
baki’s universe, even if Bourbaki himself was too slow and awkward to really
appreciate the new development.

Atthis juncture, contemporary “foundations” morphed into a superstructure,
high level floor of mathematics building itself. This is the reason why I keep
using the suggestive word “metamathematics” for it.

This event generated a stream of philosophical thought striving to recover
the lost normative function. One of the reasons of my private mutiny against it
(see e.g. [11]]) was my incapability to find any of the philosophical arguments
more convincing than even the simplest mathematical reasonings, whatever
“forbidden” notions they might involve.

In particular, whatever doubts one might have about the scale of Cantorial
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cardinal and ordinal infinities, the basic idea of set embodied in Cantor’s famous
“definition”, as a collection of definite, distinct objects of our thought, is as
alive as ever. Thinking about a topological space, a category, a homotopy type,
a language or a model, we start with imagining such a collection, or several
ones, and continue by adding new types “of distinct objects of our thought”,
derivable from the previous ones or embodying fresh insights.

To summarize: good metamathematics is good mathematics rather than
shackles on good mathematics.

Plan of the article. Whatever one’s attitude to mathematical Platonism might
be, it is indisputable that human minds constitute an important part of habitat
of mathematics. In the first section, I will postulate three basic types of
mathematical intuition and argue that one can recognize them at each scale of
study: personal, interpersonal and historical ones.

The second section is concerned with historical development of the di-
chotomy continuous/discrete and evolving interrelations between its terms.

Finally, in the third section I briefly recall the discrete structures of linear
languages studied in classical metamathematics, and then sketch the grow-
ing array of language—like non—discrete structures that gradually become the
subject—matter of contemporary metamathematics.

1. Modes of mathematical intuition

1.1. Three modes. I will adopt here the viewpoint according to which at the
individual level mathematical intuition, both primary and trained one, has three
basic sources, that I will describe as spatial, linguistic, and operational ones.

The neurobiological correlates of the spatial/linguistic dichotomy were elab-
orated in the classical studies of lateral asymmetry of brain. When its mathe-
matical content is objectivized, one often speaks about the opposition contin-
uous/discrete.

The linguistic/operational dichotomy is observed in many experiments
studying proto—mathematical abilities of animals. Animals, when they solve
and communicate solutions of elementary problems related to counting, use
not words but actions: cf. some expressive descriptions by Stanislas Dehaene
in [6], Chapter 1: “Talented and gifted animals”. Operational mode, when
it is externalized and codified, becomes a powerful tool for social expansion
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of mathematics. Learning by rote of “multiplication table” became almost a
symbol of democratic education.

The sweeping subdivision of mathematics into Geometry and Algebra, to
which at the beginning of modern era was added Analysis (or Calculus) can
be considered as a correlate on the scale of whole (Western) civilization of the
trichotomy that we postulated above on the scale of an individual (cf. [2]).

It is less widely recognized that even at the civilization scale, at various
historical periods, each of the spatial, linguistic and operational modes of math-
ematical intuition can dominate and govern the way that basic mathematical
abstractions are perceived and treated.

I will consider as an example “natural” numbers. Most of us nowadays
immediately associate them with their names: decimal notation 1,2,3, ...,
1984, ..., perhaps completed by less systemic signs such as 105 or XIX.

This was decidedly not always so as the following examples stretching over
centuries and millennia show.

1.2. Euclid and his “Elements”: spatial and operational vs linguistic. For
Euclid, a number was a “magnitude”, a potential result of measurement. Mea-
surement of a geometric figure A by a “unit”, another geometric figure U, was
conceived as a “physical activity in mental space’”: moving a segment of line
inside another segment, step by step; paving a square by smaller squares etc.
Inequality A < B roughly speaking, meant that a figure A could be moved
to fit inside B (eventually, after cutting A into several pieces and rearranging
them in the interior of B).

In this sense, Euclidean geometry might be conceived as “physics of solid
bodies in the dimensions one, two and three” (or more precisely, after Einstein,
physics in gravitational vacuum of respective dimension). This pervasive
identification of Euclidean space with our physical space probably influenced
the history of Euclid’s “fifth postulate”. This history includes repeating attempts
to prove it, that is, to deduce properties of space “at infinity” from observable
ones at a finite distance, and then only reluctant acceptance of the Bolyai and
Lobachevsky non—Euclidean spaces as “non—physical” ones.

As opposed to addition and subtraction, the multiplication of numbers nat-
urally required passage into a higher dimension: multiplying two lengths, we
get a surface. This was a great obstacle, but, I think, also opened for trained
imagination the door to higher dimensions. At least, when Euclid has to speak
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about the product of an arbitrary large finite set of primes (as in his proof in-
volving p;1 ... p, + 1), he is careful to explain his general reasoning by the case
of three factors, but without doubt, he had some mental images overcoming
this restriction.

In fact, the strength of spatial and operational imagination required and
achieved by modern mathematics can be glimpsed on a series of examples,
starting, say with Morse theory and reaching Perelman’s proof of Poincaré
conjecture. Moreover, physicists could produce such wonders as Feynman’s
path integral and Witten’s topological invariants, which mathematicians include
in their more rigidly organized world only with considerable efforts.

Atfirst sight, it might seem strange that the notion of a prime number, theorem
about (potential) infinity of primes, and theorem about unique decomposition
could have been stated and proved by Euclid in his geometric world, when no
systematic notation for integers was accepted as yet, and no computational rules
dealing with such a notation rather than numbers themselves were available.

But trying to rationalize this historical fact, one comes to a somewhat para-
doxical realization that an efficient notation, such as Hindu—Arabic numerals,
actually does not help, and even hinders the understanding of properties re-
lated to divisibility, primality etc. that is, all properties that refer to numbers
themselves rather than their names.

In fact, the whole number theory could come into being only unencumbered
by any efficient notation for numbers.

1.3. “Algorist and Abacist”: linguistic vs operational. The dissemination
of a positional number system in Europe after the appearance of Leonardo
Fibonacci’s Liber Abaci (1202) was, in essence, the beginning of the expansion
of a universal, truly global language. Its final victory took quite some time.

The book by Gregorio Reisch, Margarita Philosophica, was published in
Strasbourg in 1504. One engraving in this book shows a female figure symbol-
izing Arithmetics. She contemplates two men, sitting at two different tables,
an abacist and an algorist.

The abacist is bent over his abacus. This primitive calculating device sur-
vived until the days of my youth: every cashier in any shop in Russia, having
accepted a payment, would start calculating change clicking movable balls of
her abacus.

The algorist is computing something, writing Hindu—Arabic numerals on his
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desk. The words “algorist” and modern “algorithm” are derived from the name
of the great Al Khwarezmi (born in Khorezm c. 780).

In the context of this subsection, the abacus illustrates the operational mode
whereas computations with numerals do the same for linguistic one (although
in other contexts the operational side of such computations might dominate).

This engraving in the reception of contemporary readers was more politi-
cised. It symbolized coming of a new epoch of democratic learning.

The Catholic Church supported the Roman tradition, usage of Roman numer-
als. They were fairly useless for practical commercial bookkeeping, calender
computations such as dates of Easter and other moveable feasts etc. Here the
abacus was of great help.

The competing tribe of algorists was able to compute things by writing
strange signs on paper or sand, and their art was associated with dangerous,
magical, secret Muslim knowledge. Al Khwarezmi teaching became their (and
our) legacy.

Arithmetics blesses both practitioners.

1.4. John Napier and Alan Turing: operational. The nascent program-
ming languages for centuries existed only as informal subdialects of a natural
language. They had a very limited (but crucially important) sphere of applica-
bility, and were addressed to human calculators, not electronic or mechanical
ones. Even Alan Turing in the 20th century, when speaking of his universal
formalization of computability, later called Turing machine, used the word
“computer” to refer to a person who mechanically follows a finite list of in-
structions lying before him/her.

The ninety—page table of natural logarithms that John Napier published in his
book Mirifici Logarithmorum Canonis Descriptio in 1614 was a paradoxical
example of this type of activity that became a cultural and historical monument
on a global scale. Napier, who computed the logarithms manually, digit by
digit, combined in one person the role of creator of new mathematics and that
of computer—clerk who followed his own instructions. His assistant Henry
Briggs later performed this function.

Napier’s tables were tables of (approximate values of) natural logarithms,
with the base e = 2, 718281828.... However, it seems that he neither referred to
e explicitly, nor even recognized its existence. Roughly speaking, after having
chosen the precision which he wanted to calculate logarithms, say with error
< 1077, he dealt with integer powers of the number 1+ 10~%, whose 10® power
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was close to e.

This is one more example of the seemingly paradoxical fact, that an efficient
and unified notation for objects of mathematical world can hinder a theoretical
understanding of this world.

All the more amazing was the philosophical insight of Leibniz, who in his
famous exhortation Calculemus! postulated that not only numerical manipula-
tions, but any rigorous, logical sequence of thoughts that derives conclusions
from initial axioms can be reduced to computation. It was the highest achieve-
ment of the great logicians of the 20th century (Hilbert, Church, Godel, Tarski,
Turing, Markov, Kolmogorov,...) to draw a precise map of the boundaries of
the Leibnizian ideal world, in which

- reasoning is equivalent to computation;
« truth can be formalized, but cannot always be verified formally;

- the “whole truth” even about the smallest infinite mathematical universe,
natural numbers, exceeds potential of any finitely generated language to
generate true theorems.

The central concept of this program, formal languages, inherited the basic
features of both natural languages (written form fixed by an alphabet) and the
positional number systems of arithmetic. In particular, any classical formal
language is one—dimensional (linear) and consists of discrete symbols that
explicitly express the basic notions of logic.

Euclid found the remedy for the deficiencies of this linearity by strictly
restricting role of natural language to the expression of logic of his proofs. The
content of his mathematical imagination was transmitted by pictures.

2. Continuous or discrete? From Euclid to Cantor to
homotopy theory

2.1. From continuous to discrete in “Elements”. As we have seen, integers
(and a restricted amount of other real numbers) for Euclid were results of
(mental) measurement: discrete came from continuous. This was one—way
road: continuous could not be produced from discrete. The idea that a line
“consists” of points, so familiar to us today, does not seem to belong to Euclid’s
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mental world and, in fact, to mental worlds of many subsequent generations of
mathematicians until Georg Cantor. For Euclid, a point can be (a part of) the
boundary of a (segment) of line, but such a segment cannot be scattered to a
heap of points.

Geometric images are the source and embodiment not only of numbers, but
of logical reasoning as well: in “Elements” at least a comparable part of its
logic is encoded in figures rather than in words.

This was made very clear in the London publication of 1847, entitled

THE FIRST SIX BOOKS OF
THE ELEMENTS OF EUCLID

IN WHICH COLOURED DIAGRAMS AND SYMBOLS
ARE USED INSTEAD OF LETTERS FOR THE

GREATER EASE OF LEARNERS

whose author was Oliver Byrne, “Surveyor of her Majesty’s settlements in the
Falklands Islands”, (see a recent republication [3]).

Byrne literally writes algebraic formulas whose main components are trian-
gles, colored sectors of circle, segments of line etc. connected by more or less
conventional algebraic signs.

2.2. Fromdiscrete to continuous: Cantor, Dedekind, Hausdorff, Bourbaki
This way is so familiar to my contemporaries that I do not have to spend much
time to its description. The description of a mathematical structure, such as a
group, or a topological space, according to Bourbaki starts with one or several
unstructured sets, to which one adds elements of a these sets or derived sets
satisfying restrictions formulated in terms of set theory.

Thus the twentieth century idea of “continuous” is based upon two parallel
notions: that of fopological space X (a set with the system of “open” subsets)
and that of a “continuous map” f: X — Y between topological spaces. Further
elaboration involving sheaves, topoi etc does not part with this basic intuition.

However, the set—theoretic point of departure helped enrich the geometric
intuition by images that were totally out of reach earlier. The discovery of
difference between continuous and measurable (from Lebesgue integral to
Brownian motion to Feynman integral) was a radical departure from Euclidean
universe.
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In a finite—dimensional context, one could now think about Cantor sets,
Hausdorff dimension and fractals, curves filling a square, Banach—Tarski theo-
rem. In infinite—dimensional contexts wide new horizons opened, starting with
topologies of Hilbert and Banach linear spaces and widening in an immense
universe of topology and measure theory of non-linear function spaces.

2.3. From continuous to discrete: homotopy theory. One of the most
important development of topology was the discovery of main definitions and
results of homotopy theory. Roughly speaking, a homotopy between two
topological spaces X,Y is a continuous deformation producing Y from X,
and similarly a homotopy between two continuous maps f,g: X — Y is a
continuous deformation producing g from f. A homotopy type is the class
of spaces that are homotopically equivalent pairwise. To see how drastically
the homotopy can change a space, one can note that a ball, or a cube, of any
dimension is contractible, that is, can be homotopically deformed to a point,
so that dimension ceases to be invariant.

The basic discrete invariant of the homotopy type of X is the set of its
connected components m(X). To see, how this invariant gives rise to one of
the basic structures of mathematics, ring of integers Z, consider a real plane
P with a fixed orientation, a point x( on it, different from (0, 0), and the set
of homotopy classes of loops (closed paths) in P, starting and ending at xg
and avoiding (0,0). This latter set can be canonically identified with Z: just
count the number of times the loop goes around (0, 0). Each loop going in the
direction of orientation counts as +1, where as the “counter—clockwise” loops
count as —1.

On a very primitive level, this identification shows how the ideas of homotopy
naturally introduce negative numbers. In the historically earlier periods when
integers were measuring geometric figures (or counting real/mental objects)
even idea of zero was very difficult and slowly gained ground in the symbolic
framework of positional notation. Introduction of negative numbers required
appellation to an extra—mathematical reality, such as debt in economics.

More generally, Voevodsky in his research project [[14] introduces the follow-
ing hierarchy of homotopy types graded by their h—levels. Zero level homotopy
type consists of one point representing contractible spaces. If types of level n
are already defined, types of level n + 1 consist of spaces such that the space
of paths between any two points belongs to type of level n.
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He further interprets types of level 1, represented by one point and empty
sets, as truth values, and types of level 2 as sets. All sets in this universe are
thus of the form 7o (X).

Higher levels are connected with theory of categories, poly—categories etc,
and we will return to them in the next section. At this point, we mention
only that Voevodsky hierarchy does not replace sets but rather systematically
embeds set—theoretical and categorical constructions and intuitions into a vaster
universe where continuous and discrete are treated on an equal footing.

3. Language-like mathematical structures
and metamathematics

3.1. Metamathematics: mathematical studies of formalized languages of
mathematics. Philosophy of mathematics in the XX-th century had to deal
with lessons of metamathematics, especially of Godel’s incompleteness theo-
rem.

As I have already said, I will consider metamathematics as a special chap-
ter of mathematics itself, whose subject is the study of formal languages and
their interpretations. On the foreground here were the first order formal lan-
guages, a formalization of Euclid’s and Aristotle’s legacy. Roughly speaking,
to Euclid we owe the mathematics of spatial imagination (and/or kinematics of
solid bodies), whereas Aristotle founded the mathematics of logical deduction,
expressed in “Elements” by natural language and creative usage of drawings.

An important parallel development of formal languages involved languages
formalizing programs for and processes of computation, of which chronologi-
cally first in the XX-th century was Church’s lambda calculus [9].

An important feature of lambda calculus is the absence of formal distinctions
between the language of programs and the language of input/output data (unlike
Turing’s machines, where a machine “is” the program, whereas input/output
are represented by binary words). When, due to von Neumann’s insights, this
feature became implemented in hardware, lambda calculus was rediscovered
and became in the 1960’s the basis of development of programming languages.

These languages are linear, in the following sense: the set of all syntactically
correct expressions in a formal language L could be described as a Bourbaki
structure consisting of a certain words, — finite sequences of letters in a given
alphabet, and finite sequences of such words, expressions. Words and ex-
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pressions must be syntactically correct (precise description of this is a part of
definition of each concrete language). Letters of alphabet are subdivided into
types: variables, connectives and quantifiers, symbols for operations, relations
... Syntactically correct expressions can be terms, formulas, ...

Such Bourbaki structures can be sufficiently rich to produce formal versions
of real mathematical texts, existing and potential ones, and make them an object
of study.

I will explain how the advent of category theory (and, to a lesser degree,
theory of computability) required enriched languages, that after formalization
become at first non—linear, and then multidimensional. Such languages require
for their study homotopy theory and suggest a respective enrichment of the
universe in which interpretations/models are supposed to live, from Sets to
Homotopy Types, as in the Voevodsky’s project (cf. above).

3.2. One-dimensional languages of diagrams and graphs. With the de-
velopment of homological algebra and category theory in the second half of
the XX-th century, the language of commutative diagrams began to penetrate
ever wider realms of mathematics. It took some time for mathematicians to
get used to “diagram-chasing.” A simply looking algebraic identity kg = hf,
when it expresses a property of four morphisms in a category, means that we are
contemplating a simple commutative diagram, in which, besides morphisms
f, 9, k, h, also the objects A, B, C, D invisible in the formula kg = hf play
key roles:

A-—2,B

f k
c—L5D
Although this square is not a “linear expression”, one may argue that it, and
its various generalizations of growing size (even the whole relevant category),
are still “one—dimensional”. This means that they can be encoded in a graph,
whose vertices are labeled by (names of ) objects of our category, whereas edges
are labeled by pairs consisting of an orientation and a morphism between the
relevant objects.
Similarly, a program written in a linear programming language can be en-

coded in a graph whose vertices are labeled by (names of) elementary oper-
ations that can be performed over the relevant data. To understand labeling
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of (oriented) edges, one must imagine that they encode channels, forwarding
output data calculated by the operation at the start (input) of the edge to the its
endpoint where they become input of the next operation (or the final output, if
the relevant vertex is labeled respectively). Labels of edges might then include
types of the relevant data.

3.3. From graphs to higher dimensions. Generally, a square of morphisms
as above need not be commutative (i. e. it is possible that kg # hf). In order
to distinguish these two cases graphically, we may decide to associate with a
commutative square the two—dimensional picture, by glueing the interior part
of the square to the relevant graph.

A well known generalization of this class of spaces are cell complexes, or,
in more combinatorial and therefore more language—like version, simplicial
complexes. Of course, we must allow labels of cells as additional structures.

In this way, we can get, for example, a geometric encoding of the category
C by a simplicial complex, in which labeled (n + 1)—complexes are sequences
of morphisms

Xo h . Jnt

X3 Xn

whereas the face map 9" omits one of the objects X; and, if 1 <7 <n —1,
replaces the pair of arrows around X; by one arrow labeled by the composition
of the relevant morphisms. The resulting simplicial space encodes the whole
category in a simplicial complex that is called the nerve of the category. Clearly,
not only objects and morphisms, but also all compositions of morphisms and
relations between them can be read off it.

Thus the language of commutative diagrams becomes a chapter of algebraic
topology, and when the study of functors is required, the chapter of homotopical
topology.

3.4. Quillen’s homotopical algebra and univalent foundations project. In
his influential book [13]], Quillen developed the idea that the natural language
for homotopy theory should appeal not to the initial intuition of continuous
deformation itself, but rather to a codified list of properties of category of
topological spaces stressing those that are relevant for studying homotopy.
Quillen defined a closed model category as a category endowed with three
special classes of morphisms: fibrations, cofibrations, and weak equivalences.
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The list of axioms which these three classes of morphisms must satisfy is not
long but structurally quite sophisticated. They can be easily defined in the
category of topological spaces using homotopy intuition but remarkably admit
translation into many other situations. An interesting new preprint [7]] even
suggests the definition of these classes in appropriate categories of discrete sets,
contributing new insights to old Cantorian problems of the scale of infinities.

Closed model categories become in particular a language of preference for
many contexts in which objects of study are quotients of “large” objects by
“large” equivalence relations, such as homotopy.

It is thus only natural that the most recent Foundation/Superstructure, Vo-
evodsky’s Univalent Foundations Project (cf. [14] and [3]]) is based on direct
axiomatization of the world of homotopy types.

As a final touch of modernism, the metalanguage of this project is a version
of typed lambda calculus, because its goal is to develop a tool for the computer
assisted verification of programs and proofs. Thus computers become more
and more involved in the interpersonal habitat of “theoretical” mathematics.

It remains to hope that humans will not be finally excluded from this habitat,
as some aggressive proponents of databases replacing science suggest (cf. [1]).

Post Scriptum: Truth and Proof in Mathematics

As I have written in [[12], the notion of “truth” in most philosophical contexts
is a reification of a certain relationship between humans and fexts/utterances/s-
tatements, the relationship that is called “belief”, “conviction” or “faith”.

Professor Blackburn in [4] in his keynote speech to the Balzan Symposium
on “Truth” (where [12] was delivered) extensively discussed other relationships
of humans to texts, such as scepticism, conservatism, relativism, deflationism.
However, in the long range all of them are secondary in the practice of a
researcher in mathematics.

I will only sketch here what must be said about texts, sources of conviction,
and methods of conviction peculiar to mathematics.

Texts. Alfred North Whitehead said that all of Western philosophy was but a
footnote to Plato.

The underlying metaphor of such a statement is: ‘“Philosophy is a text”, the
sum total of all philosophic utterances.
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Mathematics decidedly is not a text, at least not in the same sense as phi-
losophy. There are no authoritative books or articles to which subsequent
generations turn again and again for wisdom. Already in the XX-th century,
researchers did not read Euclid, Newton, Leibniz or Hilbert in order to study
geometry, calculus or mathematical logic. The life span of any contemporary
mathematical paper or book can be years, in the best (and exceptional) case
decades. Mathematical wisdom, if not forgotten, lives as an invariant of all its
(re)presentations in a permanently self-renewing discourse.

Sources and methods of conviction. Mathematical truth is not revealed, and its
acceptance is not imposed by any authority.

Ideally, the truth of a mathematical statement is ensured by a proof, and the
ideal picture of a proof is a sequence of elementary arguments whose rules of
formation are explicitly laid down before the proof even begins, and ideally
are common for all proofs that have been devised and can be devised in future.
The admissible starting points of proofs, “axioms”, and terms in which they
are formulated, should also be discussed and made explicit.

This ideal picture is so rigid that it became the subject of mathematical study
in metamathematics.

But in the creative mathematics, the role of proof is in no way restricted to its
function of carrier of conviction. Otherwise, there would be no need for Carl
Friedrich Gauss to consider eight (!) different proofs the quadratic reciprocity
law (cf. [10] for an extended bibliography; I am grateful to Prof. Yuri Tschinkel
for this reference).

One metaphor of proof is a route, which might be a desert track boring and
unimpressive until one finally reaches the oasis of one’s destination, or a foot
path in green hills, exciting and energizing, opening great vistas of unexplored
lands and seductive offshoots, leading far away even after the initial destination
point has been reached.
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Classical and Intuitionistic Geometric Logic
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Abstract: Geometric sequents “A implies C” where all axioms A and conclusion
C are universal closures of implications of positive formulas play distinguished role
in several areas including category theory and (recently) logical analysis of Kant’s
theory of cognition. They are known to form a Glivenko class: existence of a classical
proof implies existence of an intuitionistic proof. Existing effective proofs of this fact
involve superexponential blow-up, but it is not known whether such increase in size
is necessary. We show that any classical proof of such a sequent can be polynomi-
ally transformed into an intuitionistic geometric proof of (classically equivalent but
intuitionistically) weaker geometric sequent.

Keywords: geometric formulas, Glivenko classes, intuitionistic logic.

Introduction

Geometric sequents (see definition below) play distinguished role in several
areas including category theory [3]]. This fragment of first order logic attracted
new attention in the light of recent work by Theodora Achourioti and Michiel
van Lambalgen [1] who propose a translation of the philosophical language of
Kant’s theory of judgements into the language of elementary logic and provide
a convincing justification of their view.

Geometric sequents are known to form a Glivenko class: existence of a
classical proof of a geometric sequent S implies existence of an intuitionistic
proof. Existing proofs of this fact involve superexponential blow-up, but we
do not know whether such increase in size is necessary. We show that any
classical proof of S can be polynomially transformed into an intuitionistic
geometric proof of (classically equivalent but intuitionistically) slightly weaker
geometric sequent.

We consider formulas of first order logic.

*Research was supported by the Russian Foundation Dynasty grant.
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Definition 1. Positive formulas are constructed from atomic formulas and the
constant | by &, V, 3.
Geometric implications are positive formulas, implications of positive for-
mulas and results of prefixing universal quantifiers to such implications.
Geometric sequents are expressions of the form

L. .I,=1

where I1, ... I,, I are geometric implications.
A geometric derivation is a derivation consisting of geometric sequents.

The second proof of Theorem [I] given below is non-effective, but the first
one allows one to derive some complexity bound. The proof begins with
construction of a cut-free derivation, therefore the only obvious bound is the
same as for cut-elimination, that is hyperexponential one. This contrasts with
the most prominent Glivenko class, namely that of negative formulas. When a
classical derivation of a negative formula is given, its intuitionistic derivation is
constructed by “negativizing” all formulas in the derivation plus local changes
to reinstate the inferences that were destroyed by this transformation. These
transformations are polynomial.

We show here a weaker result for geometric sequents. Any classical proof
(with cut) of a geometric sequent I' = I can be polynomially transformed into
an intuitionistic geometric proof of a geometric sequent D, I' = I where D is
obtained by introducing abbreviations for some formulas. In fact D, I' = I is
intuitionistically derivable iff I' = I is intutionistically derivable, but on the
surface the definitions in D are only classical.

In section [I] we give two proofs of the Glivenko property of geometric
sequents.

Section 2 describes depth-reducing transformations we need for our proofs.
As far as I know, this use of formulas (I7}19) especially to achieve that the
whole proof is new. It is inspired by similar use of (18) by V. Orevkov [5] in a
different situation.

Section [3|contains the proof of the main result.

We use = for literal coincidence of syntactic objects and <> for a logical
equivalence connective.

LK, LJ are Gentzen’s systems for classical and intuitionistic logic, both with
cut.
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¢, ¢ denote derivability in classical or intuitionistic logic, that is in LK, LJ
with cut.

A formula translation of a sequent S = A;,...A, = By,...B, is a
formula ST = (A1& ... &A, — B1 V...V By,). Many notions defined for
formulas are generalized to sequents via the formula translation. For example
S < T for sequents S, T means S < T7.

c-models are ordinary models for the classical predicate logic, :-models are
Kripke models.

1. Geometric sequents have Glivenko property

The next theorem is well-known. The deductive proof given here is due to
V. Orevkov [5] and can be traced back to the work of H. Curry [2].

Theorem 1. A geometric sequent is derivable classically iff it is derivable
intuitionistically.

1. A deductive proof. Consider a cut-free proof of a geometric sequent
I'—1

in LK. Since the succedent rules for —, V are invertible in LK, we can analyze
away initial universal quantifiers and implication in I, then assume that [ is
a positive formula. After that the sequent I' = I contains only connective
occurrences that give rise to rules

=&,=V,=>3&=,V=,d=, 5=

These rules are common for LK and LJm, hence our LK-derivation is already
LJm-derivation, as required. F

2. A model-theoretic proof. The idea here is rather similar, but I have not seen
this proof in literature. Suppose a geometric sequent I' = I with positive
formula I is underivable in LJm. Consider its proof search tree in LJm (see for
example Mints [4]). This tree is not a derivation, and hence has a non-closed
branch generating a Kripke countermodel for I' =- I. The rules for analysis of
the connectives V, — in succedent are not applied in this tree. But these are
exactly the rules that add new worlds to a model. Therefore the resulting model
has just one world, and hence it is a classical model refuting our sequent.
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2. Reducing formula depth

Familiar depth-reducing transformations by introduction of new predicate vari-
ables are modified here to preserve geometric sequents. There are subtle points
noted below. Let’s first recall well-known facts.

Let’s define a relation between formulas (widely used in literature without a
special name) which is weaker than provable equivalence but in some respects
similar to it.

Write F' >* G where s € {c, i} if

G= F' = Fand * F'[P,/Fy,...P,/F,]

where P;/ F; are substitutions (performed in this order) for predicate variables
Py, ... P, not occurring in F.

Lemma 1. Assume F'>° G. Then
1. % Fifft-% G,

2. s-models for G are expansions (with respect to P, . .. P,) of s-models for
F.

Proof. 1. +° F — @G is obvious. If H* G then since G = (F' — F) the
substitutions P;/F}, ... P, /F, and modus ponens yield -* F'.

2. Similarly to[I]

-
Notation x below stands for x1, . . . x,, with distinct variables x1, ... z,.
Lemma 2. [f x contains all free variables of formulas A(x), B(x) then
LJ FVx(A(x) <> B(x)) = (F(A) <> F(B)).
Proof. Induction on F'. +

Lemma 3. If P is a fresh n-ary predicate symbol, x contains all free variables
of the formula A(x) then for L € {LJ, LK}

L= F(A)iff LFVYx(A(x)< P(x))= F(P)
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Proof. If L + F(A), apply the previous Lemma.

If L FVx(A(x) <> P(x)) = F(P), substitute A for P. The antecedent of
the sequent becomes Vx(A(x) <> A(x)). =

For a given formula £’ assume that for every non-atomic subformula G of
F' a fresh predicate symbol Pg is chosen with the same arity as the number
of free variables of G. In particular Pr has free variables of F' as arguments.
Atomic subformula P(t1, .. .t,) is not changed.

Symbols P can be treated as pointers to subformulas of F'. This informal
observation can be formalized by assigning equivalences F to subformulas G
in the following way:

If G(x) = H(y) ® K(z) for ® € {&,V,—} then

Eq = Vx(Pg(x) < (Pr(y) © Pk (2))) (1

where y,z C x.
If G(x) = QyH(x,y) for Q € {V, 3} then

Eq = Vx(Pa(x) < QuPu(x,y)). )

Lemma 4. Let G, H ... F be all non-atomic subformulas of F. Then for
Le{LJ, LK}

LF-F« L+ EqgEy,...Ep = Pr.

Proof. Apply previous Lemma successively to subformulas, beginning with
the innermost ones. -

Let’s rewrite equivalences (I),(2) as pairs or triples of implications, trans-
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forming these implications in LJ-equivalent way.

Vx(Poen(x) — FPa(y)), 3)
Vx(Pggr(x) — Pu(z)), )
Vx(Pe(y)&Pu(z) — Poen(x); &)
vx(Pely) — Peva(x)), (6)

Vx(Pp(z) — Pavr(x)), (7
Vx(Pevi(x) — (Pely)V Pu(z)); ®)
Vx(Payp(x) — JyPa(x,y)) )
VxVy(Pa(x,y) — Payp,(x)) (10)
VxVy(Paypy(x) = Pa(x,y)); (11)

* Vx(VyPo(x,y) — PRyyp,(x)) (12)

*« Vx(-Pg(x) — P.g(x)) (13)
Vx(Pg(x)&P-g(x) — 1) (14)
Vx(Pe—u(x)&Pc(y) — Pu(z)) (15)
«Vx((Pa(y) = Pu(z)) — Poon(x)) (16)

All these universally quantified implications are geometric except the three
marked by a *. Let’s replace them by classically equivalent geometric impli-
cations.

Vx3y(Pa(x,y) — Pyyr,(x)) a7
Vy(Pely) vV Ply)) (18)
vx(Pu(#) = Paon(x) & (Poly)VPosu()  (19)

Denote the resulting set of geometric implications (3}11), (14,15) and
(17,18,19) for subformulas of a set F of formulas by DEFg.

3. Transformation of classical derivations

In this section we mean by intuitionistic predicate calculus a multiple-succedent
formulation LIm (cf. Mints [4]) which differs from LK only in the requirement
that the list A is empty in the succedent rules for —, =, V:

AT = A AT =A,B ['= A, A(b)
'=A-A I'=AA—-B I'= AVzA(z)
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Definition 2. Formulas -4, A — B,VzA introduced by these rules in an
LK-derivation are called below special formulas when A is non-empty.

Let d be a derivation of a geometric sequent .S in LK. Then f(d) denotes the
set of all cut formulas in d and DEF; denotes DEF¢ 4.

Theorem 2.

1. Let d be a derivation of a geometric sequent I1 = ® in LK. Then it can
be polynomially transformed into a geometric derivation in LIm of the
sequent

DEF;, 11 — &

consisting of geometric sequents.
2. DEF Il = & >¢ 11 = &.
3. F*DEFy, Il = ®if + DEFy Il = ®iff HIl= &

Proof. We assume that all axioms A,I' — A, A have atomic A. Using if
needed inversion transformations we assume that ® consists of positive formu-
las. Then every special formula F’ is traceable to a cut formula. More precisely,
F = F'(t) where F'(x) is a subformula of some cut formula. Formula F”
has a “representative” Pps(x) in DEFy where x are free variables of F’. In
this sense any occurrence of a formula F' traceable to a cut formula has a
representative which we write as Pr(t).

Denote by d* the result of replacing every such occurrence of F(t) as a
separate formula in a sequent in d by Pr(t).

This replacement destroys inferences having such F'(t) as principal formulas.
Consider these inferences in turn to show they can be repaired using DEF.

Axioms are assumed to be atomic, therefore they are preserved. The cut
inferences become cuts on atomic formulas.

Antecedent inferences are repaired using geometric implications in De fy.
For example —-antecedent inference

F:>A,G(t1) H(tg),FiA
G(tl) — H(tg),r = A

goes into the figure

I'= A,Pg(tl) PH(tg),F = A
Pou(t),I' = A
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which is transformed using the formula Pg_, ;7 (t)& P (t1) — Pr(t2) denoted
below by I which is an instance of a formula (15) in DEF ;.

axiom
Poou(t) = Pou(t) T'= A, Pg(t)
PGHH(t),F:>A,PGHH(t)&Pg(tl) PH(tg),FﬁA
1, PG_>H(t), r=A
DEF, PG_>H(t), I'=A

V=

Other antecedent rules and succedent rules common to LK and LJm are treated
similarly. Of the remaining rules consider -, — and V in succedent. Given
derivations are transformed as follows. The derivation

G,I'= A

I'= A, -G

goes to
Pg(t),r = A P—\G<t> = Pﬂg(t)

Pg(t) vV Pg(t), I = A, Pg(t)
DEF,T = A, Pgi(t)

The derivation
GI'=AH

I'=AG—H

goes to

Pg(t1),I' = A, Py(te) axioms

Py (t2) = Poou(t), Po(t1) V Paopu(t),I = A, Po,u(t)
DEF,, I = A, Pasp(t)

V=, o=

The derivation

= A G(b)
I' — A, VyG(y)
goes to
I'— A, P(t,b) Py (t) = Py (t) N
Pa(t,b) = Pyygy)(t),I = A, Pyygy)(t) _—

FY(Pe(y,t) = Poyay)(t), T = A, Poyay) (b, t)
DEFd, I — A, vag(y) (t)
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This completes the proof of the first part of the theorem.

The second part follows from classical derivability of the results of substi-
tution Pg /G into formulas in DEF ;.

For the third part, if ¢ DEF 4, IT — & then substitution P /G for G € f(d)
yields ¢ II = ®, then (by Theorem 1) - IT = ® and hence ¢ DEF 4, I1 = &
completing the chain of equivalences. As pointed out in the Introduction, the
transformation in Theorem 1 is not polynomial. F
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This paper studies a Glivenko sequent class, i.e. a class of sequents where
classical derivability entails intuitionistic derivability; more specifically, the
paper is about “geometric sequents”. The main old result in this topic is a
direct consequence [11] of Barr’s theorem[T] As background, Mints sketches an
old deductive proof (from [7]) and an old model-theoretic proof, as in Exercise
2.6.14 of [10]; but, his interest being in complexity of proof transformations,
he gives a third proof, of a result both more and less general.

A modern reconstruction [[6]] of Orevkov’s proof [7, Theorem 4.1, part (1)]
relies on what we would now call the “cut-free G3c calculus” [9]], in which Cut
and other structural rules are admissible and all the logical rules are invertible
(indeed, height-preserving invertible). His result is that the list (or “o-class™)
[, =1, V1] is a “completely Glivenko class”; in other words, he shows that
if a sequent with a single succedent has no positive occurrences of —, = or V
then its classical derivability implies its intuitionistic derivability. In modern
terminology, this means just that if a sequent I' = A (where I" consists of
geometric implications and A is a positive formula) is derivable in cut-free
G3c, then it is already derivable in the intuitionistic calculus m-G3i (also from
[9]). The proof method actually shows the stronger result, that the cut-free

1 “Let £ be a Grothendieck topos. Then there is a complete Boolean algebra B and an exact
cotripleable functor £ — FB”, 713 being the topos of sheaves over 3 [1].

© The Author(s) and College Publications 2017



128 R. Dyckhoff and S. Negri

G3c derivation is already a m-G3i derivation. The weaker result extends to
the case where A is a geometric implication by using the invertibility in cut-
free G3c of the succedent rules for the three mentioned connectives. Other
work, such as [4], related to the deductive proof of this result, is cited in the
bibliographies of [S]] and [6]. The usefulness of cut-free G3 calculi in the study
of Glivenko classes has been further demonstrated in [6], with direct proofs of
generalisations of results in [7].

Mints’ interest, however, in this paper is in derivations in G3c¢ with Cut.
One can apply standard cut-elimination transformations, and then those corre-
sponding to the inversions; but this leads to a “super-exponential blow-up”, as
can be seen in a similar context in [9, Section 5.2]. How can this be avoided?
One solution is just to start with a cut-free derivation. One can go even further,
using the cut-free calculi introduced in [5], where the axioms I' are replaced
by inference rules: this avoids proof transformations entirely (since, in such
calculi, classical proofs of a geometric implication A are already intuitionis-
tic proofs). But, Mints would insist that G3¢ with Cut is a traditional (i.e.
respectable) starting point.

The question then arises: can the transformation be changed so that there is
an at most polynomial expansion of the derivation? Clearly it should not begin
with cut elimination, so a trick is needed to handle instances of the Cut rule
rather than eliminating them. The trick is attributed to Orevkov [7]; one might
also attribute it to Skolem, who pioneered in [8] the use of what [2] should
have called “relational Skolemisation”, i.e. the replacement, by introduction of
new relation symbols, of complex formulae by atomic formulae. When this is
sufficiently thorough to ensure that every formula is equivalent to an atomic
formula, it is called “atomisation” or “Morleyisation”; this paper doesn’t go so
far.

The novel result of this paper is now the result (both weaker and stronger)
that, if d is a classical proof of a geometric sequent, then it can be polynomially
transformed into an intuitionistic proof of the sequent conservatively extended
by extra antecedent formulae that are geometric implications. These extra
implications are generated by relational Skolemisation of the subformulae of
the cut formulae in d. The result is weaker by virtue of having these extra
implications; it is stronger by virtue of the complexity reduction.

There are the following points at which the paper is incorrect:
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1. Mints” (9) should be Vx(Psyq(x) — 3JyPg(x,y)) rather than
Vx(Payrg (x) = JyPa(x.y));

2. His (10) should be VxVy(Pg(x,y) — Psyq(x)) rather than
VxVy(Pa(x,y) = Paypg(%));

3. His (11) should be VxVy(Pyac(x) — Pg(x,y)) rather than
VxVy(Pyyp; (%) = Fa(%,9));

4. His (12) should be Vx(VyPg(x,y) — Pyya(x)) rather than
Vx(VyPa(x,y) = Pyypg(%));

5. His (19) (replacing (16)) is not a geometric implication;
6. His (17) (replacing (12)) is not a geometric implication.

The first four of these problems are minor: note that in Mints’ (9) the suffix
JyPq is not a subformula of one of the cut-formulae, and similarly for (10),
(11) and (12). The penultimate problem can be fixed by distributing ¥x across
the conjunction, thus obtaining two geometric implications: Vx(Pp(z) —
Pg_pg(x)) and Vx(Pg(y) V Po—m(x)). [It has already been made clear that
y and z are subsets of the set x of variables.]

The final problem is not so easily fixed: the paper wrongly claims that the
formula Vx3y(Pg(x,y) — Pyyp,(x)) is a geometric implication. This is not
fixed by changing (12) (as proposed above) to Vx(VyPg(x,y) — PRyya(x))
and then obtaining Vx3y(Pg(x,y) — Pyya(x)); this is still not geometric,
because of the implication within the scope of the existential quantifier.

A partial solution may be had by changing this formula to the geometric
implication

Vx(JyP-c(x,y) V Pryc(x)) (17)

but this introduces a new relation symbol P_g, where -G may not be a
subformula of one of the cut formulae. To fix this problem, the relational
Skolemisation needs to be applied not just to all such subformulae but also to
all their negations.

With these changes, the application of the extra formulae (i.e. members of
DEF,) to deal with the special formulae of the derivation is unchanged for
implication. We show (for example) the effects of improving (9) on the treat-
ment of an antecedent 3-inference and of correcting the treatment of universal
quantification.
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The improved version of (9) is Vx(P5,¢(x) — JyPg(x,y)). The step

Gb),T'= A
JyG(y), T = A

is transformed to
Pey)(t,0),DEF,, T = A
JyPaq)(t,v)), DEFg, ' = A
DEF 4, P3y () (t), T = A

d=

Using the improved version of (17), the step

I'= A,G(t,b)
I'= A VyG(t,y)

is transformed (with some implicit weakenings to save space and aid readability)
to

DEFy,T = A, Pg(x,y) (£, b)

Wkn
P_G(x,y) (£, 5), DEF 4, T = A, Py, (£, b)

P_g(x,y) (t;0), DEF g, T = A, P_g(x,y) (£, 5) A Pg(x,y)(t, b)
P_G(x,y) (t:0), 7(PoG(x,y) (£: D) A Pg(x o) (£, D)), DEFy, I'= A
P_G(x,y) (t:0), DEFg, T= A

= A, axziom

- =

I= axiom
EyPﬁG(xyy)(t, y), DEF4, I'= A Pyya(x,y) (t), I'=A, Pyya(x,y) (t)

FYP_G(x,y) (8 Y) V Pyya(x,y) (), DEFg, = A, Pyyg(x,y) (8)
DEFg,I'= A, Py, (x,y) (t)

Note the importance of having Py, (x,,)(t) (rather than, from the succedent
of the old (17), Mints’ Py, p,, (t)) in the antecedent of the lowest axiom step. It
is not the case that Vy Pg (x,,) (i.e. Mints’ Vy ;) is a subformula of one of the
cut formulae; the presence of the fresh predicate symbol Fgy ) forbids this.

Note also the use of the Weakening rule Wkn; either this rule should be
included in the m-G3i calculus or the admissibility of the rule exploited once
the derivation has been fully transformed.
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framework of his critique of reason. Critique has changed our understanding of logic
from seeing it as organon to an understanding of it as a canon of finite cognition.
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of its formalization in account of Kant’s idea of pure general logic.
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1. Introduction

Currently, at a casual glance, it might appear that logic, of the shape it was
created in by Aristotle, is a science of forms of thought. There have been
many speculations presuming that logic of such type deals only with the formal
thought-structures, independent of any content. Therefore, logic, understood
in a such way, could be entitled formal logic, i.e. a pure formal science. At the
same time, this kind of logic is often treated as wrong, obsolete or, at least, as
insufficient one. Such critique generally goes from the point of contemporary
logic, which overcame the notion of a thought-form by reducing of object-
matter of logic, to the pure symbols and the rules of their combinations. The
representatives of so-called symbolic logic understand it as the direct opposite
of the traditional formal one. Herein, the question of what the proper quid
Jjuris of their criticism of traditional logic actually is, arises. In the fact, there

© The Author(s) and College Publications 2017
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is the following reason for such a question to arise. Symbolic logic deals with
forms as well, but contemporary logicians understand them quite otherwise.
Moreover, being self-evident but not distinct enough the notion of formality
is presupposed in both cases. It is obvious that symbols and rules of their
combinations are formal as the thought-forms pari passu. Namely, both forms
of thinking and signs are independent of their possible content. Hence, we have
to ask whether symbolic logic is a later descendant of formal logic which has
forgotten its own roots.

In other words, is it permissible to consider the definition, given currently
both to ontological and epistemological statuses of such symbols, symbolic
structures and rules of their combinations, as strict and correct? It is a well-
known fact that pure forms of such a kind play a significant role in the process
of so-called formalization as one of the basic methods of the contemporary
scientific knowledge, but what kind of formalization would allow them to
become forms empty of any content? If we tried to formalize the things
themselves, which we can accomplish any formalization by, it would lead us
into regressus ad infinitum. Hence, the formality of logical symbols remains
problematic both for ontology and epistemology.

Further, we can inquire into the following matter. Which understanding of
the essence of logic and its object domain does play the role of the basis of
the differentiation of the mentioned kinds of logic at all? Moreover, it raises
another question. Which understanding of the essence of logic and its objects
domain does make the basis of the notion of the formality of logical forms in
each case?

Indeed, the necessity of the separation of both forms of thought and sym-
bols from their specific content is not self-evident. Moreover, it is perfectly
possible that the differentiation existing between them is the extremely later
term-division which was being made through the abstractive work of “pure
reason” during the history of philosophy. Therefore, this differentiation, as
such, has to be justified both ontologically and epistemologically. It is to our
regret, that it is impossible to accomplish such a justification in the system-
atical regard here, but we could undertake a reconstruction of an indicative
example of interpretation of logic from the history of philosophy which would
emphasize the problematic character of the logical formality. In this way, the
validity of the logical formalism could be justified not by a formal deduction of
its possibility, which, as it was said, would lead to regressus ad infinitum, but
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by detection of the transcendental genesis of the separation of form and content
and, hence, of the notion of logic as of a pure formal discipline in any sense. To
be more precise, the matter concerns the transformation of the understanding
of the essence of logic made by Immanuel Kant.

It is doubtless that Kant’s revolutionary conception of logic is one of the
most important points in the historical path of the separation of the notions of
form and content which remains, even latently, a live issue nowadays. Hence,
it is a matter of great importance for the genuine conception of conditions of
possibility and limits of applicability of logic as a formal science. We believe
that today it could induce our philosophical disputations on the nature of logical
forms and structures.

In this context, on one hand, the main aim of the article is to demonstrate the
conditions of shaping of notion of form in its logical sense, by reconstructing
Kant’s logical views. On the other hand, we should remember that Kant showed
of all others that logic in its transcendental shape could have some content. Its
content can be only the a priori one. Thereby, the correlation between logic as
a discipline of the pure universal forms and transcendental logic has to remain
controversial. However, we presuppose that the transcendental conditions of
Kant’s interpretation of logic are historically responsible for the genesis of
symbolic logic of nowadays. And therefore, it might be justified theoretically
only by an ontological and epistemological justification of Kant’s logical views.

We believe that the transformation of the understanding of the essence of
logic made by Kant cannot be attacked from the standpoint of today’s logic and
semantics which finally have been derived from Kant’s position. Moreover,
there is no need in justifying Kant’s logic through them.

In this context, in the course of this consideration, we referred to the follow-
ing paper by Achourioti and van Lambalgen [1]]. It is devoted to a justification
of the Kant’s idea of logic from the perspective of today’s symbolic logic. As
it was stated, our thesis is the opposite one. One ought to verify today’s logi-
cal approaches through the reconstruction of the transcendental and historical
genesis of the ontological and epistemological conditions of logic, shaping it
as a discipline of formal symbols and structures from the transformation of the
essence of logic made by Kant.



136 A. Patkul

2. Traditional logic

Nevertheless, it remains very questionable whether logic could be described
as a formal discipline starting right from its origin in Aristotle. It is well-
known fact that Aristotle treated form (uopgr)) as a shape (€idoc) or even a
prototype (mopddetypo). For instance, he speaks about form in the sense of
causa formalis, “The form and template, which is the account of the what-
it-was-to-be-that-thing. Also the kinds of form are causes in this way. [...]
Also the intrinsic parts of the account.’{T] [3 p. 115]. Hence, to be more exact
one ought to say that form as €{do¢ is connected with logos as a meaningful
definition. Certainly, €ldoc is one of the possible senses of the term of form.
At the same time, it is the preferential one. Anyway, the form, treated in
Aristotelian way, is something always rich in content. In this case, no form
can be separated from its content. It remains questionable, whether it could
be possible to differentiate form from formless content in €idoc within the
framework of Aristotle’s views on logic. We believe that no distinction of form
and content can exist inside €idog at all. Any form is always form of certain
content, they correspond in an absolute way to each other in Aristotle’s opinion.
Any €idog, itself, is form (uopyr)) as such which holds its own certain content as
its “What” in itself. Therefore, one cannot understand logic only as a discipline
of pure forms of thinking, independent of any content. Farther, it is doubtful
whether logic (the title which Aristotle himself hasn’t used) meant eémotHun,
i.e. a science in the strict sense for him. We have to remember that any science,
insofar it is a science, should have its own object domain which would have
its own ontological status (being in things or only in our mind and so on) and
which should be distinct strictly from the object domains of all other sciences
in accordance with Aristotle.

Yet we could not find something alike logic in his set of sciences, both
theoretical and practical. For instance, logic is absent in Aristotle’s set of
theoretical sciences, which philosophia prima, physics and mathematics belong
to. It indicates that logic, from its creator’s standpoint, does not have its own
object, possessing necessary and invariable principles. Therefore, there is
no specific domain of beings (including the domain of mathematical objects

In his own words Aristotle even says, “...3A\hov 8¢ t0 €ldoc xol TO TaPddelypa,
toUto & Eéotiv 6 Moyoc toU tf fiv elvon xal t& TolTou YévN [...] xol T& péen T& €V
6 NoYw”(Metaph., V, 1013a, 25). Here dA\\ov 8¢ means “one can speak about something as
cause”. See English translation in [2].
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which are immovable and dependent upon our mind) which could be the object
domain of logical investigations as such. Hence, any specific realm of pure
logical forms exists neither per se nor in rebus nor in mentis. Therefore, logic
cannot be understood as a true science.

Rather, logic is a kind of t€yvn which deals only with the rules of any
correct cognition. Thus, we should learn it before we start to cognize any
object domain.

3. The misinterpretation of traditional logic

In opposition, there is an existent conviction, that logic even in its Aristotelian
version, is a science in the most rigorous sense. One can compare its status,
with regard to exactness, only to the status of mathematics. (Assuming, that
the question of propinquity or heterogeneity of both logic and mathematics
remains disputable). Thereby, this conviction has an essential presupposition
and, in accordance with it, logic, consistent with the general notion of a science,
should have a specific object domain which ought to be cognized by it. This
presupposition is generally missed. This domain is considered a region of
empty thinking-forms or, in today’s version, sign-forms. On the other hand,
in this regard it might even appear that today’s understanding of logic, in the
constructive version, recovers original treating of it as t€yvr in Aristotelian
sense. For instance, logic could be understood as t€yvn in a sense of creation
of logical formulas by the combination of signs which corresponds to given
rules. But what kind of ontological or epistemological status can these rules,
as such, have?

Indeed, various types of today’s logic do not need to possess any kind of
object domain to be considered as an exact and rigorous discipline. But, as it
was said, this circumstance does not exclude logic dealing with empty forms
in the way which they attribute to Aristotelian Analytics. However, such forms
mustn’t be treated as forms of thinking. As it was stated, the status of such
forms is ontologically problematic. In this regard, contemporary logic remains
just a specification of an idea of a science of pure forms but technically it is
more sophisticated. The truth is that Aristotle himself did not consider his
analytic as a science of pure forms.



138 A. Patkul

4. Kant’s modification of logic

Now, the following question should be posed. What served as the origin of
as well as the reason for transformation, the idea of logic undergone, from its
Aristotelian understanding as €y v to treating it as a science of pure forms both
of thought and signs? Perhaps, such transformation began a great while ago.
We could even propose that it began a long while ago before Kant. However,
Kant’s treating of logic is one of the most notable examples of a reinterpretation
of the essence of logical knowledge which could cast the light on the problem of
the genesis of the notion of logic as a science which deals only with pure forms
apart from their actual content. Nevertheless, Zinkstok emphasizes, “The first
thing we should note is that Kant calls logic a science. This is, in fact, a break
with most of the traditional views . ..” [13} p. 39]. The possible answer to this
question is the following. The origin of transformation of the understanding
of the logic’s essence could be found in Immanuel Kant’s Critique of Pure
Reason.

4.1. Logic, noumena and phenomena

It is a well-known fact that the transformation of idea of logic made by Kant is
connected with the change in treating of this science as 6pyavov of knowledge
(as it was for Aristotle) to treating it as xavcyv of any possible cognition. From
Kant’s standpoint, previously it was thought, that logic as pyavov is not only
necessary condition for any knowledge but also the sufficient one. For instance,
before Kant it was considered that logical criteria are absolutely sufficient for
rational cognition, i.e. for such kind of cognition which does not refer to any
possible experience.

Kant has turned the tide. In accordance with his standpoint, logic can serve
as the necessary but not the sufficient condition of cognition. Any knowledge
has to correspond to logic, i.e. it must not come into a contradiction with
logical laws, in the first instance, to first analytical principle of tertium non
datur. In other words, any cognition has to be free from contradiction within
itself. At the same time, according to Kant, logic (without its connection with
a possible experience) is not sufficient for acquiring new knowledge. Hence,
it is impossible to obtain new knowledge in the pure rational disciplines with
such object domains which cannot be given in any possible experience (soul
as simple substance, world as a whole, God). These objects are just ideas of
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reason in Kant’s terminology.

Kant justifies this new conception by the thesis that logic is applicable only
to the things as phenomena, but not to the things as such or to entities as entities
(ens qua ens) in the terms of Aristotle. Thus, logic corresponds to something
that does not have objective (in the sense of being in rebus themselves) but
belongs only to the field of subjectivity. The meaning of subjectivity in this
and following expressions does not refer to subject as to a singular person.
It is related only to a subject in general or, in other words, to a structures
of subjectivity as such. Thereby, these structures should necessarily have a
relation to the mode which something what exists in itself can be given to us as
subjects in a transcendental sense of subjectivity in. As it was said, it implies
that any cognition has to be measured by logic, but logic as such cannot give
any new knowledge. Insofar, it is isolated from experience (i.e. from the way
which the phenomena could appear in) logic can have only subjective but, at
the same time, a general and necessary value. In such a way, logic acquires the
meaning of sine qua non of any knowledge but not of actual cognition. Hence,
it is unacceptable to treat Kant’s view of logic without regard for the division
made by him between phenomena and noumena.

At the same time, a science of logic acquires the meaning of a science
of pure forms of thought which are originally on the subjective side and,
hence, independent of the concrete content of phenomena given to us through
experience. Such acquiring of the subjective character by logic is a necessary
condition for the shaping of the notion of pure form. Nevertheless, such
acquiring, insofar it is based on the transcendental character of the subjectivity,
cannot relativize logic. By the possible relativization of logic we mean such
kind of its treating, which implies that the common value of the logical forms
is relative to an empirical subject or, in other words, to a singular person who
uses these forms. Kant denied any empirical relativity of logic in this sense.
Namely, the matter of experience appears in an accidental mode but forms of
thought are general and necessary according to him. They have to be present
in us a priori to make appearance of a matter through experience possible.
However, they justify their objective value only by applying themselves to the
things as phenomena, i.e. to content of our experience.

On one hand, one can understand the famous division of types of logic made
by Kant in his Critique of Pure Reason only in the context of the described
transformation of the role of logic for human cognition. On the other hand, this
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division can brilliantly demonstrate the reduction of logic to a science of pure
forms of thought made by Kant. In order to do so we have to make an attempt
to reconstruct an architectonic of logical disciplines given by Kant, in broad
outline. For further information on the matter see, for example, [13].

4.2. The general and the particular use of understanding

Thus, Kant has primarily divided the general notion of logic into (i) logic of
the general and (ii) logic of the particular use of our understanding. He stated,

Now, logic in its turn may be considered as twofold, — namely, as logic of
the general [universal], or of the particular use of understanding. (AS2,
B77) [9. pp. 46-47]

The type of logic, last mentioned, deals with a particular object domain in each
case as well as with main rules of its cognition. The logic of the particular
use of understanding always refers to a matter of one of object domains. In
a manner of speaking, it should follow a content of this domain. Hence, as it
depends on concrete content of an object domain, logic of such type cannot be
detected as a pure or formal science.

Thus, it is quite noteworthy that Kant considers logic, which would refer
to some matter, being possible only as a particular but not as an universal
discipline. One can suppose that this circumstance goes back up to Aristotle’s
fundamental thesis, “That which is is spoken of in many ways” [3, p. 167]1[7 or
—in scholastic formula — to analogia entis. In fact, Kant does not refer to these
formulas. It is unlikely at all that he actually knew this Aristotelian conception.
For German-speaking philosophy it was rediscovered later, thanks to the efforts
of Brentano.

It is more important that Kant accepted that logic can be non-universal in any
case. The possibility of the non-universality of logic stems from the fact that
it is connected with its content, i.e. with a matter of a certain object domain.
Therefore, following the thesis 0 "6v Aéyetar mohhory ¢ there is no universal
object domain. Moreover, no universal object domain is ontologically possible.
Hence, logic can be universal on the assumption of an abstraction from any
particular object domain. Any type of universal logic or other formal calculus
can, it seems, be only objectless. Here, the objectlessness implies that universal

2In Aristotle’s own words: (t0 *6v Aéyeton nolhay®ec) (Metaph., VII, 1, 1028 a, 10). See
[2].
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logic does not refer to any object, neither to universal (which is ontologically
impossible) nor to particular (which are non-universal) ones. In this sense, it
refers only to its own structures which has no objective character but only the
(transcendental) subjective one.

On the other hand, as may be supposed, universal logic could not be objectless
but it relates to all possible objects by the abstraction from differences of
individual entities, of types of objects and so on. Indeed, it is acceptable
to interpret Kant’s notion of universal logic in this way. In such case, logic
would be directed toward an object. But its object would be non-particular.
We are opposed to such treating of Kant’s view on universal logic. Here, one
ought to emphasize two reasons for doing so. (i) We adhere to the above-
mentioned Aristotelian thesis which we consider an ontological principle, any
understanding of logic has to be founded on. To “6v Aéyeton molhoyése.
Therefore, as it was said, no universal object (even an empty and indifferent
one) is ontologically possible. Any object should have its own essence as
well as a way-of-being. “Object in general” is a flatus vocis. The source of the
general validity of logic is quite different from any objectivity. It is subjective in
a transcendental sense of subjectivity. (ii) Since Kant made a division between
noumena and phenomena we cannot tell if logical forms could be applied to
noumena which belong to “object in general”. For instance, we do not know
whether thinking of God has to be yielded to the principle of tertium non datur.
After all, the mystics of all time have been telling us that God is being and

non-being at the same moment.
Anyway, we assent to an opinion of MacFarlane who has stated the following,

Kant’s claim that logic is purely Formal — that it abstracts entirely from the
objective content of thought —is in fact a radical innovation. [L1} pp. 44-45]

MacFarlane demonstrated that this “radical innovation” was bounded to Kant’s
rejection of neo-Leibnizian views on logic, implying that logic is general but
not objectless. It has its own most general content. In contraposition to them,
Kant started to understand logic as a discipline which deals only with rules of
thinking, i.e. which has only subjective sense.

One way or another, Kant himself described logic of the particular use of
understanding in the following words,

The logic of the particular use of the understanding contains the laws of
correct thinking upon a particular class of objects. (A52, B77) [9, p. 47]

As opposed to logic of the general use of understanding, logic of its particular
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use may be organon of cognition of a specific object domain in accordance with
Kant. He stated,

The forme may be called elemental logic, — the latter, the organon of this
or that particular science. The latter is for the most part employed in the
schools, as a propaedeutic to the sciences, although, indeed, according to
the course of human reason, it is the last thing we arrive at, when the science
is already matured, and needs only in finishing touches toward its correction
and completion; for our knowledge of the objects of our attempted science
must be tolerably extensive and complete before we can indicate the laws by
which a science of these objects can be established. (A52, B77) [9, p. 47]

We may presuppose that the logic of the particular use of our understanding
could be identified with methodology of a particular science in contemporary
word usage. It deals with the rules of cognition of a specified object domain
but it can appear only after the maturity of one or another particular science.

However, we think that Kant’s idea of the particular logic of understanding
remains relevant at the present day. Namely, we believe that an attempt of
comparison of Kant’s logic of the particular use of understanding and the notion
of the regional ontology in the phenomenological branch of today’s philosophy
could be productive in various methodological perspectivesff] Though, the
notion of the regional ontology is not derived directly from Kant’s notion of
particular logic, this Kant’s term usage could clarify the proper meaning of the
term “logic”, for instance, in Heidegger’s word-combination “productive logic
of science” (6} p. 4] which was understood as a regional ontology by him.

Nevertheless, we have to dismiss this analogy between logic of the partic-
ular use of understanding and the regional ontology and revert to the above-
mentioned division between the logic of the general use of understanding and
the logic of its particular use accomplished by Kant. Now we should inquire
into first part of this division.

4.2.1. Back to the division made by Kant

Here, we have to recall that Kant defined logic of the general use of under-
standing as a discipline which deals with general rules of thought regardless of
any matter of applying of this thought. As it was said, in contrast to logic of
the particular use of understanding, logic of its general use cannot be general

3 “The former” means here the logic of the general use of understanding.
4See, for instance, [8]].
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organon of our finite cognition. It can be only its canon. Then, Kant called it
“elemental logic”.
Namely, he stated that logic of the general use of understanding

[...] contains the absolutely necessary laws of thought, no use of un-
derstanding at all could be possible without, and therefore gave laws to
understanding, regardless of the difference of objects, which it may be
applied to. (A52, B77) [9, p. 47]

It is obvious that such distinction was a good step forward in the direction of
shaping of the notion of logic as a science of pure forms abstracted from any
content. Namely, Kant started to consider a logical form on the base of the
notion of the law of thought. The laws of thought are of functional character.
So, a form of thought is a function which prescribes the one and only mode
which it could act in, regardless of its content. This functional character is
based on the spontaneity of thinking as such. The condition, necessary for it, is
the universality of a law of thought, i.e. its independence of a concrete matter
or content. MacFarlane emphasized the normative character of general logic
in this regard,

The generality of logic, for Frege as for Kant, is a normative generality:
logic is general in the sense that it provides constitutive norms for thought
as such, regardless of its subject matter. [11, p. 35]

Only logic of such kind can be universal. In other words, it can be used
indifferently to the peculiarity of an object domain. In particular, it has to be
noted that such understanding of general logic leads to very productive and,
yet, very disputable idea of formal ontology which reckons as its object not just
subjective “laws of thought” (as it considered by Kant) but also the universal
and the only formal definitions of something in general, or of “quasi-region”
(Husserl). Nevertheless, here one has to dismiss the reason for a turn from
pure formal logic (from the mathesis universalis in the widest sense) to formal
ontology without prejudice.

In any case, the mentioned step is still insufficient for the ultimate formation
of the notion of logic as of a science of pure forms in Kant’s interpretation.
We just have to point out here, that the distinction between logic of general
and logic of the particular use of understanding is based on the quantitative
principle of the difference between generality and particularity. Thereby this
qualitative principle is aligned with the difference between dependence upon
content and its independence stated by Kant. Only the independence of any
content of logic ensures its quantitative generality.
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4.3. Pure and applied universal logic

As distinct from the notion of logic of the particular use of understanding, the
notion of logic of its general use is divisible further from Kant’s standpoint.
He believed that logic of the general use of understanding can be divided in
two parts. Namely, they are, on one hand, pure logic and, on the other hand,
applied logic. The common condition for both types of logic is their generality.

The first of the mentioned types of logic, as of a general discipline, deals
only with the rules of thought regardless of the concrete conditions of its
implementation by an empirical subject. The laws of thought are equally
independent of the situation which someone applies them in. Nevertheless,
they belong not to objectivity but to the subjective field only, they possess an
ideal identity within themselves. The universal and transcendental character of
subjectivity in accordance with Kant is the guarantee for such identity. Hence,
it is indifferent for the formality of the laws of thought who, where, when and
how applies them. In each case, they will remain the same. In this sense, it has
to be said, that the laws of logic have “objective value” but it does not mean
that the ground of this value lies in objects. It doesn’t mean that their source
lies in objectivity in its opposition to empirical subjects. This characteristic of
the laws of logic refers only to “objectivity” in the sense of the ideal “universal
validity”.

On the contrary, general but applied logic takes into account such empir-
ical conditions of thinking. This difference could be well-clarified by a few
statement made by Kant in his Critique of Pure Reason,

General logic is again either pure or applied. In the former, we abstract all
the empirical conditions under which the understanding is exercised; for
example, the influence of the senses, the play of the fantasy or imagination,
the laws of the memory, the force of habit, of inclination etc, consequently
also, the sources of prejudice, —in a word, we abstract all causes from which
particular cognitions arise, because these causes regard the understanding
under certain circumstances of its application, and, to the knowledge of
them experience is required. (A52-3, B77) [9, pp. 47-48]

Hence, we could detect that Kant’s term “applied logic” is equal to psychology
of logical knowledge in the contemporary usage of terms. The author of
Critique of Pure Reason has especially emphasized that he used the term
“applied” with regard to logic in quite a different sense than it is commonly
used. According to Kant’s interpretation of applied logic, it doesn’t belong
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to any kind of t€yvrn. It is not a technical discipline or a kind of skill which
teaches how to apply the logical rules and laws correctly. Applied logic is
exactly general logic, not a particular one. Since it is one of subsections of
general logic, one cannot use it as Gpyavov of cognition. In any event, it does
not consider the logical laws in a strict sense. It treats the domain, which should
be already yielded to the rules of the general use of understanding. Hence, it,
in fact, remains questionable whether Kant’s characteristic of this discipline
as of logic is correct. At the same time, it cannot be understood as xavev
of knowledge, in contrast to other subsection of logic of the general use of
understanding.
The thinker stated the following, concerning general applied logic,

General logic is called applied, when it is directed to the laws of the use of the
understanding, under the subjective empirical conditions which psychology
teaches us. It has therefore empirical principles, although, at the same time,
it is in so far general, that it applies to the exercise of the understanding,
without regard to difference of objects. On this account, moreover, it
is neither a canon of the understanding in general, nor an organon of a
particular science, but merely a cathartic of the human understanding.
(A53,B77-78) [9, p. 48]

Since the domain, which applied general logic inquires into, is already yielded
to the general rules of understanding, pure general logic has no need to follow
such empirical conditions. It its origin lies not in our actual but in contingent
experience,

Pure general logic has to do, therefore, merely with pure a priori principles,
and is a canon of understanding and reason, but only in respect of the formal
part of their use, be the content what it may, empirical or transcendental.
(A53,B77) [9, p. 48]

Therefore, the laws of use of understanding, which pure applied logic discovers,
should correspond to the “pure a priori principles”. For, in its turn, applied
logic as such has to be commensurate to the common xavcv of knowledge, i.e.
to pure general logic. Hence, general logic is not deducible from pure applied
logic. In other words, it is impossible to derive logical forms as such from
the modes, we use and apply them in, in our empirical circumstances. As it
was said, the logical forms should be already present in a way. They can be
applicable in this case only. The usage and the application of logical forms are

already yielded to these forms.
In this regard, Kant concluded,
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In general logic, therefore, that part which constitutes pure logic must
be carefully distinguished from that which constitutes applied (though still
general) logic. The former alone is properly science, although short and dry,
as the methodical exposition of an elemental doctrine of the understanding
ought to be. (A53-4, B78) [9, p. 48]

It is our belief that in this way Kant derived the notion of logic, very close to
“formal logic” in a contemporary sense. In Kant’s words, formal logic is the
pure general one, i.e. it is logic, independent as well of concrete content given
by the experience as of concrete conditions of accomplishing of thinking by an
empirical subject.

In summary of this subsection, we would state that principle of the differen-
tiation of pure and applied logic within the framework of logic of the general
use of understanding lies in the difference of the notions of the transcendental
and the empirical fields. Hence, it is a qualitative or, to be more precise, es-
sential, principle as distinct from the basis of the differentiation of general and
particular logics. As it becomes apparent, Kant pointed out two requirements
for such kind of logic or conditions it could be formed in:

(i) One ought to differentiate form and content in a thought disregarding to
the differences between objects which could be thought by a logical form.
Then, one ought to expound form as that what belongs to subjective field.
Content has to be considered as that what derives from objects. In that
way, we can differentiate form and content finally and, then, get the notion
of the form of thought, which would be independent of its content.

(ii) One ought to exclude “empirical principles” of usage of logical forms
and, hence, to show that psychological conditions of application of logic
have nothing to do with the laws of logic as such. In this way, one can
justify why the relativity of the logical forms in their application does not
follow from their subjective status. Namely, we show that the universality
of these forms does not contradict to their subjectivity because of their
subjectivity is not the empirical one. See, for instance, [11, p. 48].

Hence, formality of logical forms is defined in a privative way through the
independence (i) of objective content and (ii) circumstances of accomplishing
of thinking. As it was said, MacFarlane believed that Kant’s understanding of
logic as of a formal discipline, hence, the peculiarity of his concept of logical
form, became a real “innovation”. The path of shaping of the notion of logical
form goes through abstraction from content both particular and general.
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4.3.1. Pure logic and antipsychologism

One especially ought to emphasize Kant’s second requirement for pure general
logic. In fact, this thinker formed some conditions for arising of so-called
antipsychologism in treating of the essence of logic. He made it by rigor-
ous distinguishing between pure formal principles and subjective empirical
conditions of thinking. It is a well-known fact that detailed critique of the
reduction of logical laws as well as of mathematical objects and structures to
the phenomena of the psychical life was elaborated subsequent to Kant in two
very different schools of philosophy, namely in analytical philosophy (Frege)
and phenomenology (Husserl). The members of the mentioned schools didn’t
accept Kant’s way of treating nature and status of logic and, especially, of its
relation to mathematics and their objects. For instance, Frege has elaborated
a program of logical justification of the mathematics, conflicting with Kant’s
understanding of the essence of the mathematics (see, in particular, [4]). In
this regard, we have to remember that logic as a science of pure forms of
thought and mathematics as knowledge based on pure forms of sensibility have
transcendentally different origin and nature form Kant’s standpoint. Hence, he
can be acknowledged as the forerunner of the mathematical intuitionism. On
the contrary, it would be wrong to speak about the elements of intuitionism in
Kant’s treating of logic. Thereby, we can find the same situation with regard to
a status of the universal validity of logic in all three cases. One can reach the
mentioned only by separation of logic forms not only from content delivered
from a side of objects but also from private or empirical-subjective conditions
of the validity of logical statements.

Nevertheless, all the above-mentioned philosophers have quite different un-
derstandings of the logic. It is our belief that one ought to bear in view such
kind of difference in presupposing of the possibility in the interpretation of
Kant’s logical views, for instance, from the point of view of Frege’s philos-
ophy. Namely, one should pose a question whether Frege’s notion of logic
could be justified on the base of the same conception of the (transcendental)
subjectivity as Kant’s treating of logic. Does Frege’s idea of logic require any
conception of subjectivity at all?

Conversely, it was demonstrated that Kant’s notion of pure general logic
is impossible without the admission of a distinction between pure and the
applied logic and, thus, without the admission of subjectivity and a subjective
character of such kind of logic at all. For instance, MacFarlane has shown
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that a possible problem in interpretations of the nature of logic made by Kant
and Frege lies in the circumstance that both philosophers had very different
understanding of a function of logic. MacFarlane stated that Kant’s “[...]
picture of logic is evidently incompatible with Frege view that logic can supply
us with substantive knowledge about objects” [11, p. 29].

On the other hand, Husserl has agreed that one has to consider the logic as
well as the mathesis universalis, as a whole, and as an effect of the constitutive
activity of the transcendental subjectivity. Hence, the idea of transcenden-
tal subjectivity is presupposed in Husserl’s case of treating of logic as well.
However, it is very doubtful that it is the same activity of subjectivity which
constitutes logical forms within Kant’s and Husserl’s understanding.

However, it is very doubtful that this is the same activity of subjectivity
which constitutes logical forms in Kant and Husserl.

5. The idea of transcendental logic

Yet, the given reconstruction of Kant’s view on logic remains insufficient. It
was shown that Kant has created a notion of pure general logic as a science of
pure forms of thought. Nonetheless, he laid down demands for creating of a
very peculiar type of universal logic which, none the less, would have certain
content. Namely, he introduced the notion of transcendental logic beyond his
taxonomy of types of logic. It is clear that his notion of pure general logic, as
logic in a current sense of formal science, belongs to this taxonomy. But a new
type of logic also claims to deal with the universal and necessary knowledge.

In his laterLectures on Logic, Kant distinguished between these two types of
logic in the following way,

Now as propaedeutic to all use of the understanding in general, universal
logic is distinct also on another side from transcendental logic, in which the
object itself is represented as an object of the mere understanding; universal
logic, on the contrary, deals with all objects in general. [10} p. 530]

Then, we have to ask again. How is it possible for logic to have universal
validity and certain content at the same time? Does it not reduce the Kant’s
breakthrough with regard to the justification of the logic’s purity and its uni-
versality to absurdity?

There could be an exact following answer to this question. Transcendental
logic in Kant’s term-use deals with very specific content, namely, with the
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relations of our cognitions with their objects. These relations are also of very
peculiar kind. Namely, the transcendental logic should inquire into the origin
of our cognitions of objects, insofar, it cannot be contained directly within these
objects.

It deals with the transcendental origin of the cognitions a priori, therefore,
the nature of transcendental logic is not analytic, but synthetic. Thereby, it
differs principally from pure general logic which deals only with analytical
forms. In opposition to it, transcendental logic is non-analytic and intends to
explicate the grounds of a connection of logical forms with objects. Hence,
transcendental logic cannot be explained through any formal analysis. It only
could be justified through the transcendental synthesis. Since it has synthetic
essence, transcendental logic deals with the transcendental genesis of both
knowledge and objectivity.

Kant himself stated with concern to his idea of transcendental logic,

In this case, there would exist a kind of logic, in which we should not make
abstraction of all content of cognition; for that logic which should comprise
merely the laws of pure thought (of an object), would of course exclude all
those cognitions which were of empirical content. This kind of logic would
also examine the origin of our cognitions of objects, so far as that origin
cannot be ascribed to the objects themselves; while, on the contrary, general
logic has nothing to do with the origin of our cognitions [...] (A55, B81)
[9, p. 48]

It might appear at the first sight that Kant, himself, has destroyed his own
idea of pure logic with the introduction of the notion of logic which would deal
not only with pure forms, as such, but also with their origin a fortiori.

Yet, Kant’s own opinion was the opposite one. The point is, that transcen-
dental logic is not connected with the origin of cognition of all types of objects
but only of the objects, which could be known a priori, exclusively. However,
in Kant’s opinion a priori possesses only a formal character. To be more exact,
one also ought to limit the notion of a priori in the current context, for it could
have a regard to the transcendental use of logic. This logic deals not with all
a priori cognitions but with the cognitions of such kind, which allow us to
know that some concepts are present a priori and can be applied only a priori.
This type of logic clarifies how it can be possible at all. But it excludes from
the consideration sensitive a priori, i.e. forms of sensibility as well as their
relations to objects. Consideration of these forms belongs to transcendental
aesthetics. Moreover, transcendental logic does not consider the very notion
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of the pure understanding, as such, but it treats relations of the mentioned to
the objects only. As it was said, its subject is the origin and the limits of their
applicability. To be more precise, from Kant’s standpoint, transcendental logic
deals with the possibility of relation of forms of thought (categories etc.) to
objects as phenomena. Therefore, it takes a part in “substantive knowledge
about objects”.

Hence, we can speak about content of transcendental logic in some peculiar
aspect. But if we try to analyze this content we will notice that such kind of
content, in its turn, is, in some sense, the formal one. Namely, transcendental
logic deals with synthetic formality of thought. For instance, Kant always
thought that the categories of the pure understanding are pure forms of under-
standing. Their relations to objects, in the same measure, are the formal ones.
In other words, transcendental logic presupposes abstraction of content too.
But this abstraction is not total. One could describe abstraction of such kind as
reduction of content to formal relations.

It is very significant that such forms and their formal relations to objects
represent the proper content of this discipline. Hence, form, in a way, is
content in case of transcendental logic. Thereby, transcendental logic is still
pure logic. Since transcendental logical forms have a relation only to objects
as phenomena, namely, to their realm as whole, insofar, it even is constituted
by such forms. Transcendental logic, in a way, is universal. For further details,
see [12]].

Dealing with the genesis of a priori concepts, transcendental logic, in the
way it was treated by Kant, has a productive moment within itself, but not
absolutely. Namely, Kant searched after the subjective conditions a priori of
a possible relation of our knowledge to objects. Hence, his understanding
of transcendental logic remains subjective (but not empirical). Still, Kant’s
transcendental logic is not the logic of any, so to say, objective content. Kant’s
treatment of transcendental logic as of a discipline which has some content
rooted in his doctrine of transcendental subjectivity and its structures a priori.

Hence, we can conclude that Kant’s idea of transcendental logic meets the
conditions of pure universal logic mentioned above. On one hand, although
it does indeed relate to some specific kind of objects excludes all sensitive
objects as well as the rules of the empirical thought from consideration, (i)
it can obtain universal validity in a certain sense. Since it inquires only into
a priori forms of thinking of objects, its content is also only form or, so to
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say, it is empty of empirical content. On the other hand, since it treats only a
priori structures of transcendental subjectivity, (ii) transcendental logic does
not depend upon the empirical conditions of cognition and therefore upon an
empirical accomplishing of our cognition. Therefore, it can have the universal
validity in the domain of objects which are also constituted by pure notions of
understanding. Yet, from Kant’s standpoint, this domain is exclusively inside
the realm of phenomena.

More to the point, Kant’s idea of transcendental logic remains currently
relevant. It has been existing in the phenomenological branch of today’s phi-
losophy, at least, since Husserl’s Formal and Transcendental Logic[}| Phe-
nomenological treating of these two kinds of logic has indicated the following
questions. Which correlation between the formal and transcendental kinds of
logic is proper? Should formal logic be grounded by transcendental logic? On
the contrary, should transcendental logic be understood as widening of formal
logic which would underlie to it? Sadly, we have to shelve these questions here.
But one ought to emphasize here that the relation of this new type of logic to
reconstructed Kant’s taxonomy of types of logic is initially ambiguous. Please,
find the description of the possible modes of this relation, as well as various
reconstructions of Kant’s taxonomy of types of logic here: [13, pp. 1-10].

6. Exclusion of ‘“‘speculative logic”

Now, we have to reject one noteworthy solution which, in our opinion, followed
from Kant’s dividing form of thought from content as its matter (as well as from
division he made between pure general and transcendental logic). We think
this solution intends to resolve the fundamental dualism of form and content
in logic, which has arisen due to the mentioned divisions made by Kant. The
solution we have in mind seems to be very effective and grandiose but, at the
same time, very controversial.

Namely, we would like to make an exclusion of so-called “speculative logic”,
which has originated from Hegel’s philosophy of absolute idealism and its
materialistic reinterpretation made in the ideology of Marxism (so-called “di-
alectical logic”) from our discussion. Nevertheless, it should be noted that this
quasi-logical solution is not absolutely unusual in the history of logic. More-
over, it could shed the light on the problem of the possibility of formalization

5In this context, see [7].
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of logic in some negative way. Namely, it can show possible limits of this
formalization.

Thus, this kind of philosophical thinking makes a claim to elaborate the
so-called logic of content. It seems to be initially incoherent, being undertaken
after a sufficient separation of form from content in logic made by Kant. Yet,
we would like just to emphasize the proper way which it was planned to be
done in. Sadly, this way often remains undetected by logicians and historians
of logic. For instance, Hegel referred not just to the possibility of explication
of concrete content of concepts from their implicative condition but also to
the possibility of producing and generating of such content through combining
of pure logical forms. From his standpoint, the idea of logic, as of a formal
discipline, roots in the abstract mode it is considered in. In fact, according to
Hegel, logic itself can generate its content and provide a matter of thought to
itself. He stated in the Introduction to his Science of Logic,

More to the point is that the emptiness of the logical forms lies rather solely
in the manner in which they are considered and dealt with. Scattered in fixed
determinations and thus nor held together in organic unity, they are dead
forms [ ... ] Therefore they lack proper content [ ... ] But logical reason is
itself the substantial or real factor which, within itself, holds together all the
abstract determinations and constitutes their proper, absolutely concrete,
unity. [S pp. 27-28]

Nevertheless, it is permissible to notice that the idea of “logic of content”,
based on Hegel’s ontological premise of speculative identity of logic and on-
tology, should not be identified with Aristotelian understanding of form as of
something rich in content. Therefore, “speculative logic” is situated outside of
the main path of elaboration of logic as of a science of empty forms, whereas
the Aristotelian shape of logic lies in the initial point of this path. Hegel and
other “dialectical” logicians tried to get over a chasm between form and con-
tent in logic through logical (in the sense which they generally understood the
logic in) tools. Hence, they aimed at unifying form and content through the
quasi-logical combinations in the situation of historically already-actualized
separation between form and content. Therefore, it could not be confused with
the initial Aristotelian notion of form as something, rich in content within it-
self. So, these dialectical ideas don’t belong to the mainstream of elaboration
of logic starting from the Aristotelian treating of form to an idea of it as of a
science of pure forms and form-combinations.
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7. Summary and conclusion

In this way, Kant has discovered the possibility of logic which describes the
correlation of the pure notions with objects. Thereby he has made room in his
architectonic of logic for the kind of logic which would be general and pure,
in a sense, yet it could not be independent of content. At the same time, its
content doesn’t have an empirical source. On this ground, this logic could
be titled as properly “philosophical logic” which deals with the origin of our
cognitions and their possible relation to objects unlike all the other types of
logic which do not have proper philosophical sense. Since this logic considers
conditions of our cognitions of objects, we would also call it epistemological
logic. Since it discovers condition of relation to objects, we, as well, could
define it as ontological logic.

Appositely, one ought to add that our earlier hypothesis implying that the
possible conceptual origin of an idea of a regional ontology in phenomenology
should lie not just in Kant’s idea of logic of the particular use of understanding
but also in his concept of transcendental logic. Indeed, logic of the particular
use of understanding can, however, play an exclusively methodological role for
a particular positive science but the regional ontology should ground one or
another particular positive science on the basis of categories and their relation
to the subject matter of this science.

Nevertheless, transcendental logic is quite different from pure logic, which
has only a formal sense that does not contradict with formal characteristics
which are present in both logics, philosophical and non-philosophical (pure
formal logical) at the same time. However, the final questions arise. Is it
possible to formalize this philosophical logic, which Kant’s doctrine of kinds
of judgment and categories belongs to? Does logic in interpretation given to
it by Kant need any formalization or, at least, allow it? There is the following
reason for such kind of questions. As it has been demonstrated already, Kant’s
transcendental logic is pure and formal (in the sense that its content is the
pure formal relations) as well as independent of singular empirical conditions.
Hence, we have to ask whether it is possible to formalize this type of logic
which has long been logic of forms.

One ought to say that there have been some attempts made recently in order
to rehabilitate Kant’s transcendental logic with regard to today’s semantics
through the formalization with the tools of today’s symbolic logic. They are
of high interest and sophisticated. For instance, we could refer to the paper by
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Achourioti and van Lambalgen [1] which was mentioned above. In particular,
these authors speak about “typical modern dismissal of Kant’s formal logic”
[1, p. 254]. (They refers to Frege’s and Strawson’s works in this regard).
Regarding the contemporary evaluation of his transcendental logic, they have
stated, “Worse, Kant’s transcendental logic does not seem to be a logic in
the modern sense at all: no syntax, no semantics, inferences” [1, p. 254].
Achourioti and van Lambalgen think magnanimously that they will save Kant’s
transcendental logic by the demonstrating that “a logical system very much
like Kant’s formal logic is a distinguished fragment of first-order logic, namely,
geometric logic” [1, p. 254]. And we do not think that it is a “hopeless
enterprise.” [1, p. 254].

Yet, from our standpoint, the following question arises in this regard. Is
it still necessary to justify Kant’s logics both pure general and transcendental
from the point of view of symbolic logic or semantics? It is a problem (i)
because, as was shown, the mentioned disciplines are possible in dimension
which was cleared away only by the transformation of the understanding of
logic with regard to the notion of a pure form made by Kant. Today’s logic has
just exchanged thought-forms to sign-forms but transcendental-philosophical
conditions of the formality which were recognized by Kant remain the same.
Moreover, (ii) Kant’s logic (even transcendental one) does not need to be, as
well as, it and cannot be formalized because, in a way, it has always possessed
the formal status, as it is. Therefore, a question posed here should be not of
how to justify Kant’s views of logic from the perspective of symbolic logic
and semantics but of existence of a possibility, as such, for justifying Kant’s
understanding of logic. It is a fact that both symbolic logic and semantics
do not pose the question of their own quid juris unlike Kant did with regard
to logic. Hence, it is still unclear where an epistemological source of the
contemporary fetishism of “syntax, semantics and inferences” is. Maybe we
could find it in Kant’s philosophy itself. Therefore, it remains disputable
whether it is possible or needed to formalize the Kantian conception of logic,
even following the semantic character of contemporary logicism which was
emphasized by MacFarlane.
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Abstract: Vagueness is a phenomenon whose manifestation occurs most clearly in
linguistic contexts. And some scholars believe that the underlying cause of vagueness
is to be traced to features of language. Such scholars typically look to formal techniques
that are themselves embedded within language, such as supervaluation theory and
semantic features of contexts of evaluation. However, when a theorist thinks that the
ultimate cause of the linguistic vagueness is due to something other than language
— for instance, due to a lack of knowledge or due to the world’s being itself vague
— then the formal techniques can no longer be restricted to those that look only at
within-language phenomena. If, for example a theorist wonders whether the world
itself might be vague, it is most natural to think of employing many-valued logics
as the appropriate formal representation theory. I investigate whether the ontological
presuppositions of metaphysical vagueness can accurately be represented by (finitely)
many-valued logics, reaching a mixed bag of results.
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Introduction

Even though people sometimes point to vague memories (e.g., of that very first
date you had) or vague objects (like the cloud above me as I write, or the mist
that covered St. Petersburg a few nights ago), it is in language where vagueness
most clearly manifests itself, and where most theorists focus their attention.
The reasons for this are not hard to fathom:

* The majority of our linguistic terms admit borderline cases;
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* We are unable to resolve the application vs. non-application of many scalar
predicates;

* We sometimes may not be able to determine what proposition (if any) is
asserted when using certain vague terms.

But even if it is in the realm of language where we find vagueness manifested,
there is still the question What is the “ultimate” cause of the vagueness? Is it
perhaps a matter of lack of knowledge? Perhaps lack of knowledge of some
relevant features of the world? Or perhaps lack of knowledge of the relevant
context? Or is it instead that the precise language is correctly representing a
vague reality? Or is it merely that language itself does not completely and
precisely represent (the non-vague, precise) reality?

It is traditional to divide viewpoints concerning the ultimate cause of vague-
ness into three sorts: (a) Epistemological Vagueness, where vagueness is
claimed to be due to a lack of knowledge — an inability to tell whether some
statement is true or false, even though it might correctly represent reality or
represent it incorrectly; (b) Linguistic Vagueness, where vagueness is claimed
to be due to a shortcoming in the language itself — the language is not ade-
quate to correctly or fully represent the detailed features of the world; and (c)
Metaphysical (or Ontological) Vagueness, where vagueness is claimed to be
inherent in reality — our language correctly represents reality, but these items
are themselves vague. We will look briefly at each in turn, before we focus on
the use (and motivation for the use) of many-valued logic.

Most accounts of vagueness, of all these different types, focus on properties
that can manifest vagueness, particularly properties that characterize a “scale”
— such as tallness, or being a heap, or intelligence, or . ... Less time has been
spent on the possibility of vague objects[]| (Of course, some scholars think
that one way to have a vague object is for it to manifest one of the vague
properties in a vague manner.) In this paper we investigate the vague objects
more closely than vague properties, although of necessity we talk also about
vague properties.

!Compare the differences in focus and detail of the papers [1] and [20].
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1. Epistemological vagueness

The natural way to understand this viewpoint on vagueness is that the “world” is
precise, determinate, definite, and so on, but our apprehension of these precise
facts is limited in one way or another by our finite epistemological powers. In
the “world” there are objects that have precise boundaries, and all properties
have sharp cut-off points (or maybe: all objects are in the clear extension or
anti-extension of all the properties).

However, because we lack knowledge, vagueness is introduced: For example,
old Prof. Worthington, the ancient don at Wembley College, only vaguely/in-
determinately/fuzzily remembers who was present at his Doctoral Viva. He
can almost remember someone with white or maybe blond hair. But he can’t
recall clearly whether it was the long-dead Coppleston or the equally dead
Millingston.

That was a case of “individual vagueness” on Worthington’s part. But there
can be wider and wider cases of vagueness: no one quite remembers what
the priest looked like at old Dr. Benoit’s baptism. And maybe it is even more
pervasive: afeature of the way the world has developed (all relevant people have
died, and no one left any unambiguous memoirs) — for instance, did Galileo
actually drop balls of different weights from on high? And did he also tether
together different weighted balls in order to determine how fast the composite
object fell? These are events that actually happened or didn’t happen — totally
and completely — in the actual world. But since there is now no evidence of any
sort to decide which way the world actually went, we say it is vague whether
Galileo dropped balls of different weights from a height. One might even go so
far as to say that this is the category of “verifiable in principle but not actually
verifiable”.

And it could be more radical than this: For example, the Epistemological
Vagueness position holds that in reality there is in fact a particular number of
grains of sand that would make this pile of sand be a heap (say, m grains).
However, we can’t know that m grains of sand make a heap because all the
evidence that we (or anyone) have available is the same for adding one grain
of sand to an (m — 2)-grains pile as it is for adding one grain of sand to an
(m — 1)-grains pile. (Since by hypothesis we can’t discern a change when
only one grain is added). Yet in the former case we don’t know that a pile has
become a heap (because by hypothesis it hasn’t). So in the latter case we can’t
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know either (even though it has become a heap)[?|
What would be an appropriate representational medium for this conception
of vagueness? Well, since the view holds that

* in the world there is no indeterminacy. . .every factual sentence either
is true or is false, every object is unique, distinct, and separate from all
others, and

 vagueness comes from a lack of positive or negative knowledge of these
facts, including lack of knowledge as to what proposition is being asserted,

it seems to follow that some sort of epistemic logic is called for. Thus the
epistemic interpretation really involves two logics: classical, two-valued logic
for “the world” and the just-mentioned epistemic logic to accommodate the
state of knowledge of people. Vagueness seems then just to be identified with
conceptual indeterminacy on the part of a speaker. Such an epistemic logic
would employ a modal operator that means “is vague”, but of course, in this
conception, being vague is interpreted as being epistemically indeterminate,
and so something can be non-vague by being definitely (in the epistemic sense)
false, as well as by being definitely true (again, in the epistemic). Thus, if
something is vague (epistemically), then so is its negation, under this concep-
tion. Using V to represent this indeterminacy (and A for determinacy), typical
postulates of such a logic include, among others

if F ¢, then Ay
Ap - A=
N < =V

So the required modal logic couldn’t be a Kripke-normal modal logic. In [[12]],
I proposed a class of logics of epistemic vagueness (or epistemic indetermi-
nacy): every statement is in fact either true or false (at a world), but when inside
the epistemic vagueness operator, we are to evaluate what is going on at a cer-
tain class of related worlds. But as I mentioned, this class is not determined in
a classical Kripke-manner, but rather in terms of “neighbourhood semantics”.

2The epistemic conception of vagueness is most famously championed by [21122/29].
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2. Linguistic vagueness

Linguistic Vagueness posits the same ontology as Epistemological Vagueness,
namely that the “world” is precise, determinate, definite, and so on. But it
differs from the epistemological version by saying that our description of these
precise facts is limited in one way or another, rather than our knowledge of the
precise facts. It holds that in the “world” there are objects that have precise
boundaries, and all properties have sharp cut-off points. Vagueness in this
conception is a matter of a kind of mismatch between language and “the world”
and not a matter of a mismatch between people’s knowledge and “the world”,
as it is in the epistemological conception. (Of course, different versions of
Linguistic Vagueness will have differing accounts of what specific parts of
language exhibit the mismatch.)

One version of this mismatch might hold, for example, that when Allen says
that George is tall, the name ‘George’ picks out some specific individual in the
world (namely, George) who has some specific height such as 180 cm. But it
might hold that there is no such primitive property in the world as being tall,
for only the specific heights count as primitive properties. In this view, either
the property TALLNESs doesn’t exist, or if it does, then at least it is not a “basic”
propertyf] but is instead defined, in one way or another, in terms of the more
basic, specific properties and (perhaps) “contexts of use” (as in some of the
“contextual theories of vagueness”, [8}/16,(19]).

It is a shortcoming of our language, according to some (but not all) of
the believers in Linguistic Vagueness, that it has developed with these sorts
of predicate-terms. Some also hold it to be a shortcoming of our language
that the denotation relation is not precise: the name ‘Mt. Everest’ does not
unproblematically designate a specific region of the Earth; so when people
use this linguistic term they are not accurately identifying what is the case “in
the world”. When a person says “This rock is a part of Mt. Everest”, the
imprecision of the denotation relation forces the sentence as a whole to be

vague[]

3] use ‘basic’ and “primitive’ in an intuitive manner, allowing that the relevant theories will
be obliged to provide a detailed analysis of these notions.
4This view of vagueness — although without the feeling that it is a shortcoming —is expressed

in [10]:

The only intelligible account of vagueness locates it in our thought and
language. The reason it’s vague where the outback begins is not that there’s
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Advocates of the explication of vagueness in terms of a linguistic mismatch
have formed the largest group of philosophers, at least starting with Frege.
Some were dismayed by the fact that natural language had vague predicates,
and saw the ideal language as remedying thisf]

We have to throw aside concept-words that do not have a Bedeutung. These
are. ..such as have vague boundaries. It must be determinate for every
object whether it falls under a concept or not; a concept word which does
not satisfy this condition on its Bedeutung is bedeutungslos. |7}, p. 178]

Some others who also thought that vagueness was linguistic believed instead
that it was a good thing in natural language:

... avague belief has a much better chance of being true than a precise one,
because there are more possible facts that would verify it. ...Precision
diminishes the likelihood of truth.” [[18| p. 91]

Vagueness is a natural consequence of the basic mechanism of word learn-
ing. The penumbral objects of a vague term are the objects whose simi-
larity to ones for which the verbal response has been rewarded is relatively
slight. . .. Good purposes are often served by not tampering with vagueness.
Vagueness is not incompatible with precision. [[15| pp. 113-115]

There are contexts in which we are much better off using a term that is
vague in a certain respect than using terms that lack this kind of vagueness.
One such context is diplomacy. [2, pp. 85-86]

(For example, “We will take strenuous measures to block unwanted aggression
whenever and wherever it occurs’” allows for a wide course of actions, whereas
any non-vague statement would not allow such freedom.)

What would be an appropriate representational medium for this conception
of vagueness? Well, since the view holds that

* in the world there is no indeterminacy. . . every factual sentence that uses
only the basic predicates and the correct denotation relation either is true
or is false, and

this thing, the outback with imprecise borders; rather, there are many things,
with different borders, and nobody’s been fool enough to try to enforce a
choice of one of them as the official referent of the word ‘outback’. (p. 212)

A similar view is expressed in [27].

5Actually, it is very difficult to find any theorist of vagueness — of whatever sort — who
thinks that vagueness is a shortcoming in language as a whole. What is more problematic, they
would say, is the use of some vague term or phrase in a context where more precision, accuracy,
or definiteness is desired and is available for use but just not chosen.
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* vagueness comes from the use of non-basic predicates (and “ambiguously
denoting” singular terms) where there is no relevantly determined method
of stating how they are related to the basic predicates,

it seems to follow that some semantic technique is needed for displaying the
various types of results that might hold between the non-basic predicates used
in some linguistic expression and the basic predicates that describe “the world”.

For example, one might decide that one class of non-basic predicates actually
are abbreviations of some (ordered) range of the basic predicates, and that it
is “context” that determines which part of this ordered range is relevant to
evaluating the truth value of the expression. (Supervaluations and maybe some
other semantic techniques, as introduced by [23L24]], and developed by [3}28]],
are plausible candidates for this sort of evaluation, as are some of the theories
that employ context, like [8, 16, 19]).

Unlike the Epistemic conception of vagueness in which every (declarative)
sentence either is true or is false (but in some cases we may not know which,
so that vagueness is a type of epistemic shortfall), in the Linguistic conception
only some sentences are true and only some are false. Among the ones that
are true or are false are those composed with basic predicates (and no funny
stuff with the denotation relation). Many of the sentences containing non-basic
predicates will be given the value ‘vague’ (i.e., ‘neither true nor false’). But
not all of these latter type of sentence will be vague, as for example when the
specific object of a predication clearly satisfies the predicate. For instance,
when 200 cm. in height LeBron James is said to be tall, this is true despite the
vagueness inherent in ‘tall’.

And there can even be true (also false) sentences about the tallness of middle-
height people. . . and similarly for other non-basic terms. For example, super-
valuation theory allows that classical logical truths and contradictions are true/-
false. And perhaps different semantic techniques, such as contextual theories,
could generate other examples.

3. Ontological vagueness

Ontological/Metaphysical/Realistic Vagueness locates vagueness “in the
world”. So, as opposed to being unclear as to whether a situation actually ob-
tains or not (Epistemic Vagueness), and as opposed to being vaguely described



164 F. J. Pelletier

by a language that contains non-basic predicates (Linguistic Vagueness), Re-
alistic Vagueness claims that certain objects in the world just plain are vague.
(The intent here, which I will in general follow, is to target physical objects
with this characterization, although it might also apply to abstracta, events, re-
lations, and so on.) Few writers have explained it, but [18], who is an advocate
of Linguistic Vagueness, assures us that it used to be a common view: “...it
is a case of the fallacy of verbalism — the fallacy that consists in mistaking the
properties of words for the properties of things.”

One might also point to fictional entities as neither having nor lacking certain
properties: Hamlet neither has nor lacks a 5 mm wart on his left shoulder. Even
though this example is from the realm of fiction, Realistic Vagueness might
claim that for an vague actual object, there is some property which it neither
has nor lacks.

As is well-known, [5] claims that all views advocating ontological vagueness
must invoke the claim that, for certain names a and b, the sentence a = b is
neither definitely true nor definitely false. (That is, Ontological Vagueness pre-
dicts that there are vague objects in the world, and when we have vague objects,
then whether they are or are not the same object can also be indeterminate, at
least according to some advocates. This gives at least a sufficient condition for
metaphysical vagueness.) [25,26] also proposed that the crucial test would be a
situation in which the question ‘In talking about = and y, how many things are
we talking about?’ has the features that ‘none’ is definitely a wrong answer;
‘three’, ‘four’, etc., are all definitely wrong answers; and neither ‘one’ nor ‘two’
is either definitely a right or definitely a wrong answer to it. I call this viewpoint
about what is the underlying feature of Ontological Vagueness the Evans/van
Inwagen criterion, or, when discussing specific argumentation that turns on
exactly how this criterion is to be represented formally, the Evans assumption
(or the van Inwagen assumption), and when considering the argumentation that
makes use of the Evans assumption I call it Evans’ argument and sometimes
an Evans argument (to emphasize that, while it is not exactly Evans’ argument,
it is an argument inspired by Evans’ argument).

What would be an appropriate representational medium for this conception
of vagueness? Well, since the view holds that

* in the world there is indeterminacy. . . vague objects actually have the real
property: being neither red nor not-red, for example, and

« for any object/property pair, either the object has the property (definitely),
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or the object lacks the property (definitely), or else it neither has nor lacks
it — and this last fact is, in its own way, just as definite as the former two,

it seems that the appropriate representation of this conception will employ a
many-valued logic. If a has property F', then Fla is true; if a lacks F’, then Fa
is false; so in the case where a neither has nor lacks F', F'a must take on some
other truth value (counting ‘neither True nor False’ as a truth value).

Employing a modal logic would not accurately capture Realistic Vagueness,
for a modal logic presumes that in each world, every sentence either is true
or is false. Employing unusual semantic techniques also does not adequately
capture Realistic Vagueness, for the Realist insists that all the properties under
discussion are in fact “real” and “basic”. Only a many-valued logic could
capture the Realist’s attitude toward vagueness.

And it is to many-valued logics that I now turn.

4. A 3-valued logic embodying vagueness

There are three values: intuitively, TRUE, FALSE, INDETERMINATE[] These are
taken to describe three different ways the actual world might relate to a sentence
describing it. That is, the portion of the actual world that is under discussion
is actually one of: definitely the way being described, definitely not the way
being described, or correctly described as indeterminate.

We would like our language to be able to express the facts that sentence ¢ is
TRUE, FALSE O INDETERMINATE (calling these semantic values T, F, I). So let
us invent sentence operators (“parametric operators”) that do that: Dy, D¢, V.
They are ordinary, extensional logic operators, having the following truth tables.

¢ | Dyp Dyp Vo
T 7 F F
F|l F T F
I\ F F T

We use standard 3-valued (Lukasiewicz) interpretations of negation, and, or.
(And use the convention that the truth values are ordered: 7" > I > F).

6We turn later to logics with more than three values, when we discuss the possibility of
describing “degrees of vagueness” as an account of “higher-order vagueness”.
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@ | o
T| F [pAY] = min([¢],[¥])
I| I [eVvp] = max([¢],[¥])
F| T

I am going to steer clear of the intricacies involved in the interpretation of
the conditional and biconditional, other than to advocate on behalf of these
principles:

[D¢-axiom]| : E Drp — ¢

[EQ-rULES] : If E (¢ <> ), then infer F (Dip <> D))
If E (¢ ), theninfer E (Dgp < Dy1))
If E(p <> ), theninfer F (Vi <> V)

Although neither (¢ A—¢) nor (~Dgp A—Ds¢) is a contradiction in a three-
valued logic, contradictions can be described by insisting on the Uniqueness
of Semantic Value in 3-valued logic[]]

[USV3]: Every sentence takes exactly one of the three values:

(DepV DoV Vi) A(Dip ADyo) AN=(Dip AV)A=(Dyo AV ).
Lemma. Ifthe main operator of formula ® is D¢, D¢, or V, then [V®] = F.

Proof. If the main connective of ® is one of the three parametric operators,
then (as can be seen from their truth tables) the value of ® is either 1" or F'.
But then V& will be F'. O

Corollary. If all sentential parts of formula ® are in the scope of any of
Dy, Dy, V, then [V®] = F, orequivalently, [-V ®] = T or equivalently,
[Dyve] = T.

With regards to using a three-valued interpretation in the predicate logic
(with identity), I do not give a full characterization, but only three principles:

[V-V]: FVI[Va)F(x)] = =(3x)Dg[F(x)]
(i.e., if it is vague that everything is F', then there cannot be anything of which
it is definitely FALSE that it is F')

[ref_]: E D¢la = qf

7Although in Graham Priest’s logic L P [14], the third value is claimed to be both T and F
simultaneously, and “not really” a different third value.
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(i.e., self-identities are definitely TRUE).

[LL]: Fa=b<+ (VF)(Fa <+ Fb)
(Leibniz’s Law, as this is usually called: Two things are identical if and only if
they share all properties[¥))

Now, while some scholars might find some of these principles questionable
(I mention Graham Priest in footnote [9] below), the holders of Ontological
Vagueness have pretty much uniformly taken them on.

5. An argument against vague objects in this logic

The argument

An Evans argument proceeds by assuming the Evans/van Inwagen criterion
of what the believers in Ontological Vagueness hold: that it can be vague
whether there is one or two objects before a person; and it continues, using the
principles mentioned above about many-valued logic. The following version is
given in [[13]].

a. Via="0 the Evans assumption

b. a=b< (VF)(Fa < Fb) LL

c. V]a=0bl+ V(VF)(Fa <« Fb) (b) and [EQ-RULE]

d. V(VF)(Fa < Fb) (), (c), «>-elim

e. —(3F)Ds(Fa < Fb) (d) and [V-Y]

f. (VF)[D¢(Fa ¢ Fb)V V(Fa > Fb)]  (e) and [USVs]

g. D¢[D¢[a = a] <> Difa = b]]V (), instantiate (VF') to
V[D¢[a = a] +> D¢la = b]] AzD¢[a = z] and A-convert

h. D¢[D¢[a = a] <> D¢la = b]] (g), [Lemma], disjunctive syllogism

i.  Dila =a] > Difa =) (h) and [ D¢-ax10M]

j. Dila=1) (i) and [ref=], <>-elim

k. —Via=b (j) and [USV3]

Although not every pair of formulas of the form ¢ and —¢ contradict one
another in a three-valued logic, (a) and (k) do really contradict each other. (a)
is either T, F, or I (by [USV3]); by the truth-table for V it cannot be I; so it is
either T or F. But this argument shows that if (a) is T then it is F, but if (a) is

8As both [[6,/11] remark, Leibniz himself only took pains to argue for the right-to-left aspect
of [LL], and that with a restriction on the types of properties that I’ designate. Presumably
everybody finds the left-to-right direction of [LL] undeniable. As is often noted, there is a
peculiarity with this verbalization of the formula, since the formula gives a condition for there
being just one thing under consideration, not two, and says that any property this one thing has
is a property it has.
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F then it is T (a la (k) and the truth table for —). But [USV3] claims that no
formula can be both T and F.?

Comments & defense of the argument

Was there any “cheating” going on in this proof, or with the postulates? Is there
something “funny” about the V -operator? Might one question the A-abstract:
is it a “real” property? Might one have concerns about one of the principles
used: [D¢-axioMm], [EQ-rULES], [USV3], [LL], [V-V], [ref-]?

The argument I presented proceeds by A-abstraction, using the predicate:
‘being definitely TRUE of x that it is identical to a’. Does that predicate
correspond to a real property? If not, then this is not a legitimate case of
A-abstraction, by the standards of Ontological Vagueness.

For the advocate of Metaphysical Vagueness, the answer must be ‘yes, it is a
genuine property’. For, it is a feature of this position that in the world there is
vagueness, and its contrary, definiteness. These are real, actual properties that
are designated by these predicates. And unless the advocates of this position
want there to be some sort of “ineffability” when it comes to their postulated
properties-in-the-world, they have to admit that such expressions do designate
such properties. The language is entirely extensional — there is no “funny
business” going on about ‘opaque contexts’ or rigid vs. non-rigid names or . . . .
The A-abstraction picks out what the believer in Ontological Vagueness must
acknowledge is a legitimate property.

But let’s look again at this presumed notion of vagueness and definiteness.
It cannot be the modal notion of the epistemicists, since that characterizes
one’s epistemic states rather than reality. That kind of (in)definiteness does
not characterize an item “in the world” but rather cognizer’s apprehension of
objects. Any indefiniteness operator of this variety will endorse a principle like
Vi < V-, as I mentioned above, and such a principle does not characterize
the usual ontological vagueness theorists” view[[|

The view of Heck in [9]] that V should in fact obey this principle shows that
his argumentation is not really directed against nor in favour of metaphysical

9This shows that if we were to interpret the middle value V as it is in Priest’s [14] — as being
both T and F — we would have to rephrase the interpretation of [USV3]. And in fact, Priest
(p.c.) says that he denies [USV3], believing that there are but two truth values, but that some
formulas can take both. Therefore, I propose this argument only against those who do not think

that vagueness leads to true contradictions.
10Well, except perhaps for dialetheic views like that of Priest [14].
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vagueness, but rather at or in favour of some hybrid view of metaphysical and
epistemic vagueness.

I say again: only the many-valued logic viewpoint accurately captures the
ontological vagueness theorist’s view.

So far as I am aware, no one has faulted the following principles that are
used in the proof (well, so long as they are willing to allow a 3-valued logic in
the first place, and as long as they see the extra values as being truly distinct
from TRUE and FALSE, contrary to Priest’s viewpoint expressed in footnote 9):

* USV3: E (Do VvV Dpp NV V) AN=(Dyp A Dgp) AN (Dgp A V) A
~(Dsp AVe);

* Diy-axiom:  F Dip — @
* ref_: F D¢[a = al;
* V-V FV[V2)®(z)] = —(3z) D[P (z)].

In the case of those believers in ontological vagueness who hold there to
be more “degrees of metaphysical vagueness” than just the three we have been
assuming, a strictly analogous proof to the very same conclusion can be crafted,
as discussed in [13]. One changes the [USV] axiom to accommodate the further
truth values, and generalizes the [V-V] axiom for the extra truth values.

We will return to a discussion of the argument after a brief excursion into
higher-order vagueness.

6. Higher-order vagueness

The topic of higher-order vagueness concerns the issue of whether it can be
vague that something is vague (and even further iterations, such as being definite
that it is vague that it is vague). For the believer in Ontological Vagueness, the
first iteration amounts to wondering whether it can be vague that some aspect of
reality is vague? It is not clear to me that a proponent of Vagueness-in-Reality
will wish to accept this as a part of their doctrine concerning Reality. They
might instead prefer to view it as a mixture of different types of vagueness:
“We don’t know whether it is true or false that such-and-so is metaphysically
vague”, and would thereby prefer some mixture of a many-valued logic with
an epistemic logic of vagueness (like that of [12]) added on. Certainly, if they
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do wish to have metaphysical higher-order vagueness, they wouldn’t represent
it by iterating the V -operator (nor with iterated mixtures of any of the V-, Dy,
and D s-operators). The previously-mentioned Lemma precludes this.

Instead they would increase the number of truth values. . . and with them, the
number of truth-operators in the language. For this purpose, it is common in
discussions of many-valued logic to take the truth-values to be integers, with
1 being “most true” and (for an n-valued logic) to make n be the “most false”
value. And then it is common to introduce the so-called J;-operators [17]]. Such
an operator is a generalization of the ideas behind our Dy, D¢ and V' operators
— like our operators, the J-operators have a formula as an argument, and are
semantically valued as being “completely true” (that is, take the value 1) if the
formula-argument takes the value indicated in the subscript of the J-operator,
and “completely false” (that is, take the value n) otherwise. Semantically this
is to say, for any value ¢ of an n-valued logic (1 <7 < n)

[Ji(p)] = 1if [p] =1
= n otherwise

For example, a five-valued logic would have J;, Jo, J3, J4, J5 as J-operators),
with truth tables:

Jip Ja2p Jzp Jap Js0
1 5 5 5 5

T W N =S
v Ot Ot Ot

5
5
1
5

= Ot Ut Ut

)
1
)
5

ot Ot Ot =

and this account might say that J3, makes the claim that ¢ is completely vague,
while Jo(p asserts that it is vague whether ¢ is completely vague or is true; and
that J4 ¢ claims that it is vague whether ¢ is completely vague or false.

With suitable additions of the number of truth-values, this seems as plausible
a way to represent higher-order metaphysical vagueness as it is in modal logic
to represent higher order epistemological vagueness by the iteration of a modal
operator VV®. However: a version of the Argument can be made using
any (finitely-) many valued logic (with suitable emendations to the various
principles). I don’t rehearse the proof of that fact here; details can be found
in [13].

I think the ability to represent higher-order vagueness (of any finite number
of iterations) shows that it is not that many-valued logics are incapable of giving
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some sense to higher-order vagueness, but that the argument in [13] demon-
strates that there is some other, perhaps deeper, incoherency with Metaphysical
Vagueness.

Although the ploy of increasing the number of truth values shows that many-
valued logics are in fact capable of giving a plausible account of higher-order
vagueness for any finite number of iterations, there remains still the issue just
mentioned: no matter how (finitely) many truth-values our ontological vague-
ness proponent wishes to invoke as a way of handling higher-order vagueness
for a finite number of truth values, there is a generalization of the Argument
that can be turned against it. A question naturally arises then concerning the
interaction of higher-order vagueness with the number of truth values. We’ve
just seen that to have one iteration of higher-order vague, we would increase
the number of truth values from three to five. If we had another iteration,
and wanted all possible combinations to be represented, we would need many
more. And if we thought it possible to have any level of iterated higher-order
vagueness, then the conclusion would be that we need an infinite-valued logic
to accommodate this. Infinite-valued logics come with their own share of un-
usual characteristics, such as that a quantified formula can be assigned true
([7i(3zFz)]=1) even without there being any object a in the domain such
that [J;(Fa)]=1. I think that most vagueness-in-reality theorists either hold
that higher-order vagueness of any sort is impossible (as various authors have
claimed, even independently of whether they believed in metaphysical vague-
ness), or else that it is bounded by some finite number of iterations. (It is not
clear how this latter possibility might be argued for by our ontological meta-
physicians. Most arguments to this conclusion come from the point of view of
it being cognitively impossible to have infinite iterations. . . and that’s not very
relevant to the ontological conception of vagueness.) Anyway, I’m not going
to consider it further.

7. Returning to the argument

In [4]], Cowles and White object to the statement of Leibniz’s Law in the form
given in [LL] above, namely

Fa=b<+ (VF)(Fa <+ Fb),
and prefer to see it as (what they call “Classical LL”):

D,[a =b] <> D|[VF(Fa < Fb)].
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They also deny the full force of the [EQ-rULEs]: They claim that just having
Fo ey

does not justify
= Vgl < VI,

nor
= Dylp] < Dy[y].

As they show, their position has the effect of denying both:
* Vla=0b] + VIVF(Fa < Fb)]
* Dy[VF(Fa < Fb)] = Dyla = b]

(although it does validate D¢[a = b] — D¢[VF(Fa <> Fb))).

Just how plausible are these denials? Not very, it seems to me. Is it really
plausible to claim that when we have a logical truth that two formulas are
equivalent, we cannot conclude that one of them is vague just in case the other
one is? Nor that one of them is definitely false just in case the other one is?
How plausible is it to claim that even when it is definitely false that two objects
share all properties, it might yet not be definitely false that these are the same
object?

On the other hand, I should admit that because of the plausibility of the [EQ-
RULES], as well as the other rules, I had originally — when I wrote [13] — thought
that the Argument showed the complete implausibility of the conception of
Metaphysical Vagueness. However, I hadn’t internalized these facts (or maybe
I hadn’t even noticed them):

1. Although the proof given was framed as showing that a contradiction
followed from the assumption of V'[a = b], it equally is a proof of
Via=0b] —» -V [(VF(Fa <> Fb)]
i.e., even if it is vague that a = b, it can’t be vague that they share all the
same properties.
2. And of course: Di[a = b] — -V [(VF(Fa <+ Fb)]

i.e., if it is definitely TRUE that @ = b, then it isn’t vague that they share all
the same properties: intuitively, it is definitely TRUE that they do share all
the same properties.
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3. Furthermore, clearly: D¢la = b] — —V[VF (Fa < Fb)]

i.e., given that it is definitely rFaLsE that a = b, it can’t be vague that they
share all the same properties: intuitively, it has to be definitely TRUE that
they differ on at least one property.

But [USV] asserts that one of the three cases must hold, so we can conclude
E ~V[VF(Fa + Fb)].

That is, it is never the case that it is vague that two(?) objects have all properties

in common. (Or, that it is never vague that an object has all the properties it
has).

In conclusion
T used to think that the original argumentation showed:

* The conception of Metaphysical Vagueness is committed to representing
its doctrines with a many-valued logic.

* The conception was committed to various logical principles (listed above),
as a consequence of its metaphysics.

* Part of Metaphysical Vagueness was a commitment to the Evans/van
Inwagen criterion.

* The Argument showed that any many-valued logic which embodied those
principles led to a contradiction.

* And I concluded that Metaphysical Vagueness — Vagueness in Reality —
was an incoherent notion.

But given that the Argument proves = —~V[VF(Fa <> Fb)], (which by one
of the [EQ-ruLEs] shows =V [a = b]), perhaps we should instead follow a
different route:

* Continue to hold to the requirement of a many-valued logic with the
specified logical principles to describe the view, BUT
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* Deny the background assumption given to us by Evans [5] and van Inwagen
[25,26] that Metaphysical Vagueness is committed to instances of V[a =
b].

* And similarly deny the [25] version of Evans’ assumption to the effect
that one cannot count vague objects — because it is never TRUE Or FALSE
that such a thing is one object and it is never TRUE or FALSE that it is two
objects.

So, by this line of thought the Argument does not show Metaphysical Vague-
ness to be incoherent, it shows instead that the Evans/van Inwagen criterion
of metaphysical vagueness is incorrect. So believers in Vagueness-in-Reality
should turn their attention to finding a different way of stating their basic meta-
physical position, and not allow their opponents to define the field for them.
Since I am not an advocate of metaphysical vagueness, I cannot therefore offer
anything for them.

However, until they do that, Metaphysical Vagueness remains a “deeply dark
and dank conception” that one should avoid.
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Abstract: The note discusses some considerations which speak to the plausibility of
the axiom that all sets are countable. It then shows that there are contradictory but
nontrivial theories of ZF set theory plus this axiom.

In this note, I will make a few comments on a principle concerning sets which I
will call the Axiom of Countability. Like the Axiom of Choice, this comes in a
weaker and a stronger form (local and global). The weaker form is a principle
which says that every set is countable:

WAC Vz3f(f is a function with domain w A Vz € 23n € w f(n) = ).

(The variables range over pure sets—including natural numbers. w is the set
of all natural numbers.) The stronger form is that the totality of all sets is
countable:

SAC 3f(f is a function with domain w A Vz3n € w f(n) = z).

The stronger form implies the weaker. Any set, a, is a sub-totality of the totality
of all sets. Hence, if the latter is countable, so is a. So I focus mainly on this.
Let us start by thinking about the so called Skolem Paradox. Take an
axiomatization of set theory, say first-order classical ZF. This proves that some
sets, and a fortiori the totality of all sets, are uncountable. Standard model
theory assures us that there are models of this theory (in which ‘€’ really is the
membership relation) where the domain of the model is countable. There is a
function which enumerates the members of the domain. It is just one which has
failed to get into the domain of the interpretation. Why should we not suppose,
then, that the universe of sets really is countable? From the perspective of
the metatheory, ZF* (ZF + ‘There is a model of ZF’), the countable model is

© The Author(s) and College Publications 2017
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not the intended “interpretation”. Our metatheory tells us that the domain of
all sets is actually uncountable. But ZF" itself has a countable model, so the
situation is exactly the same with this. We might suppose that the countable
model of this tells us how things actually are. True, in the metatheory we are
now working in, ZF™" (ZF" + ‘There is a model of ZF™"), that model will
appear not to be the intended model. But we can reply in the exactly same
way. Clearly, the situation repeats indefinitely. And at no stage are we forced
to conclude that the universe of sets is really uncountable. We will always have
a countable model at our disposal.

Indeed, it is not just the case that there is nothing that will force us to conclude
that the universe of sets is really uncountable. There are certain conceptions
of sethood which actually push us to that conclusion. Thus, suppose that one
takes the not implausible view that sets are simply the extensions of predicates
(or some predicates anyway)[T| Then, given that the language is countable, so
it the universe of sets.

Now, imagine that the history of set theory had been slightly different.
Suppose that set theory had been investigated for a few years before Cantor,
and that those who investigated it took sets to be simply the extensions of
predicates. Suppose also that the theory had actually been formalised, say by
some mathematician, Zedeff. The (strong) Axiom of Countability, being an a
priori truth about sets, was one of the axioms. Things were bubbling along
nicely, until Cantor came along and showed that within the theory one could
prove that some sets are uncountable. The theory was inconsistent. In this
history, Cantor was playing Russell to Zedeff’s Frege. We can imagine that
the community was dismayed by this paradox, and started to try to amend the
axiomatization in such a way as to avoid paradox. Perhaps, indeed, the hierarchy
ZF, ZF*, ZF ", ... emerged—rather as the hierarchy of Tarski metalanguages
emerged in our actual history.

In actual history, set theory was consistentized in response to Russell’s
paradox and related ones. However, as we now know, there is an alternative:
maintain the naive comprehension schema—that is, the schema JxVy(y €
x < 1), where 1 does not contain y—allow the paradoxes, and deploy a
paraconsistent logic, which quarantines the paradoxes. The same was an option
in our hypothetical history; maintain the Axiom of Countability, the paradoxes
it generates, and deploy a paraconsistent logic.

ISee [2, ch. 10]. See also [1]].
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Now back to reality. Is there such a theory? There is. Using the para-
consistent logic LP, we can show the existence of such a theory by applying
a result called the Collapsing Lemma. Take a first-order language (without
function symbols) for LP Let M = (D, d) be any interpretation for this.
Let ~ be any equivalence relation on D If d € D, let [d] be its equivalence
class under ~. We define a new interpretation (the collapsed interpretation),
M~ = (D~,6"), as follows. D~ = {[d] : d € D}. For any constant, c,
0~ (c) = [0(¢)]. For any n-place predicate, P, {(aj, ..., a,) is in the extension
of P in M~ iff there are d; € ay, ..., d,, € ay, such that (dy, ..., d,) is in the
extension of P in M. Similarly for the anti-extension of P. The collapse, in
effect, simply identifies all the members of an equivalence class, producing an
object with the properties of each of its members. The Collapsing Lemma tells
us that any sentence in the language of M (i.e., the language augmented with
a name for each member of D) which is true in M is true in M"™; and any
sentence false in M is false in M~ [

To apply this: let the language be the language of first-order ZF (without
set abstracts). Take a (classical) interpretation of this, M, which is a model
of ZF. Let k be any countable set in D). (Here, and in what follows, I mean
countable—or uncountable—in the sense of A.) Consider the equivalence
relation on D which identifies all uncountable sets with &, and otherwise leaves
everything alone. Thatis,  ~ yiffin M:

* x and y are uncountable

* or (x is uncountable and y is k)

* or (y is uncountable and z is k)

* or (x and y are both k)

* or (z and y are countable sets distinct from k, and x = y).

Now consider the collapsed model obtained with ~. By the Collapsing Lemma,
this is a model of ZF. But in M ™ every set is countable. For every constant, c,
that denotes a countable set in M

2For a presentation of the semantics of LP, see [2, sec. 16.3].

3If the language were to contain function symbols, ~ would also have to be a congruence
on their interpretations.

“For full details, including the proof, see [2, sec. 16.8].
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* 3f(f is a function with domain w A Vz € ¢3n € w f(n) = x)

is true in M, and so by the Collapsing Lemma, in M~. Since every member
of D™ has such a name in M ™, we have the WAC in M"~:

* Vz3f(f is a function with domain w A Vz € z3n € w f(n) = x).

A slightly different equivalence relation delivers an interpretation which
verifies SAC. Let k now be the object which is V, (the sets of rank w) in M.
Consider the equivalence relation which identifies all things of rank greater
than w with V,,, and leaves everything else alone. That is, z ~ y iff in M:

cex,yeVy,andx =y
sorxz,y ¢V,

Again, this is a model of ZF. kU {k} is countable in M. Let 7 be the name
of the function that enumerates it, and let e be the name of any member of
kU {k}. Thenin M it is true that:

* i is a function with domain w A In € wi(n) = e.

Hence this is true in M ~. But since every member of D™ is named by some e
of this kind, we have in M"™:

* i is a function with domain w A Vz3n € wi(n) = x.
Hence we have the SAC in M™:
 3f(f is a function with domain w A Vz3n € w f(n) = .

For good measure, M ™ is also a model of the naive comprehension schema,
J2Va(xz € z = A), toolf] If sets just are the extensions of predicates, one
would expect this schema to hold. I note also that both of the models we have
constructed are non-trivial. Thus, if c and d refer to two distinct objects in D
that are not involved in the collapse, ¢ = d is not true in the collapsed model.
What we see, then, is that there are (non-trivial) theories that contain the
(strong or weak) Axiom of Countability, plus ZF (plus, in one case, the naive
comprehension schema). If T is the set of things true in either of the collapsed
models we have constructed, 7" is one such theory. Within such a theory, every

SFor details see [2, sec. 18.4].
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set is countable; but, because of Cantor’s Theorem, some sets are uncountable
as well. It is Cantor’s Theorem that generates the hierarchy of different sizes
of infinity. And as seen from the perspective of one of these theories, the
Theorem is recognizably paradoxical. The whole hierarchy of infinities is
therefore a consequence of the paradox. The transfinite, then, is generated by
the transconsistent[9]

In anutshell: the Axiom of Countability makes perfectly good paraconsistent
sense, even within the context of ZF. And it provides a radically new possible
perspective on the universe of sets.
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Abstract: In a sheaf-theoretic framework, we describe the process of interpretation
of a text written in some unspecified natural language, say in English. We consider
only texts written for human understanding, those we call admissible. A meaning of
a part of a text is accepted as the communicative content grasped in a reading process
following the reader’s interpretive initiative formalized by the term sense. For the
meaningfulness correlative with an idealized reader’s linguistic competence, the set
of all meaningful parts of an admissible text is stable under arbitrary unions and finite
intersections, and hence it defines a topology that we call phonocentric. We interpret
syntactic notions in terms of topology and order; it is a kind of fopological formal
syntax. The connectedness and the Tp-separability of such a phonocentric topology
are linguistic universals. According to a particular sense of reading, we assign to each
meaningful fragment of a given text the set of all its meanings those may be grasped
in all possible readings in this sense. This way, to any sense of reading, we assign
a sheaf of fragmentary meanings. All such sheaves constitute a category, in terms
of which we develop a sheaf-theoretic formal semantics. It allows us to generalize
Frege’s compositionality and contextuality principles related with the Frege duality
between the category of all sheaves of fragmentary meanings and the category of all
bundles of contextual meanings. The acceptance of one of these principles implies the
acceptance of the other. This Frege duality gives rise to a representation of fragmentary
meanings by continuous functions. Finally, we develop a kind of dynamic semantics
that describes how the interpretation proceeds as a stepwise extension of a meaning
representation function from the initial meaningful fragment to the whole interpreted
text.

Keywords: sense, meaning, phonocentric topology, linguistic universals, sheaf of

fragmentary meanings, compositionality principle, contextuality principle, bundle of
contextual meanings, Frege duality, dynamic semantics.
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1. Introduction and informal outline

In this work, we apply rigorous mathematical methods in studying the process
in which the understanding of a written text or an uttered discourse is reached.
Our aim is to present a formal model for the understanding of a text or a
discourse in a natural language communication process.

Any natural language serves as a means of communication between mem-
bers of a community that shares this language. The life of a human society,
primitive or developed, ancient or contemporary would be impossible without
linguistic communication. When we communicate with each other, we are
involved in the activity of exchange with two complementary sides, that is, the
production and the understanding of language messages in oral or in written
form. Any linguistic communication presupposes the emitting activity that
produces a message and the receiving activity that produces an understanding.
The message is an externalization of thoughts either by utterance or by writing.
As a linguistic message unit, a single stand-alone sentence (or phrase) does
not suffice to express the variety of thoughts and ideas that people need to
communicate. The minimal exchange units that serve as messages in linguistic
communications are written texts and uttered discourses. Linguistics is a disci-
pline that studies the use of a language; for empirical objects, it has, therefore,
texts and discourses as the units of human interaction, and not stand-alone
words or phrases favoured by traditional grammars and the logic in the wake
of Aristotelian tradition primarily concerned with questions of reference and
truth.

The main parts of traditional grammars are syntax and semantics. A tradi-
tional syntax is a study of sentence structures in a given language, specifically
in terms of word order. A semantics, of whatever kind, is the study of rela-
tionships between the linguistic expressions and their meanings. Traditional
approaches are very restrictive or even inadequate to extend grammatical con-
cepts and theories to the level of text or discourse in order to describe linguistic
communication in all its forms.

The present work proposes a mathematical framework that generalizes syntax
and semantics of a natural language from the traditional level of a stand-alone
sentence or phrase to the level of written or spoken discourse. We propose a
kind of a discourse analysis that describes the process of a natural language
message interpretation in a uniform manner at all semantic levels.
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The paper is organized as follows:

e In the next Sect. 2] we discuss in details our acceptance of basic semantic
notions meaning, sense, and reference. We study the interpretation of a text in
a certain unspecified natural language, say in English, considered as a means
of linguistic communication (mostly in written form). We consider the class of
minimal communicative units of a language as made up of texts, and thus it is
broader than the class of all stand-alone sentences studied in traditional logical
and grammatical theories.

From the set-theoretic point of view, any text is a sequence of its constituent
sentences[T| But from the theoretic point of view on linguistic communication,
do we need to define somehow what is a genuine text? It seems useless
to set some formal criteria of textuality those, likewise to formal criteria of
grammaticality, would decide that a given sequence of sentences is a well-
formed text. Although some particular sequence of words or sentences does
not appear to be well-formed, nobody can guarantee the contrary for the future,
because a natural language is always open for changes. However, the ethics
of linguistic communication presupposes that a genuine text is written by its
author(s) as a message intended to be understood by a reader. That is why,
instead of adopting any criterion of textuality, we restrict the domain of our
study to texts that we assume to be written ‘with good grace’ as messages
intended for human understanding; those we call admissible. All sequences
of words written in order to imitate some human writings are cast aside as
irrelevant to the linguistic communication.

A meaning of a part of text is accepted as the communicative content grasped
in a particular reading of this part following the idealized reader’s attitude,
presupposition and intention put together in the term sense. We adopt this
acceptance of terms ‘sense’ and ‘meaning’ because it is close to the ordinary
usage of these words in everyday English. The advantage of such a choice
of terminology is that we can use words ‘sense’ and ‘meaning’ sometimes as
linguistic terms, sometimes as ordinary words without specifying each time
their mode of use. Otherwise, we were to accept in the use their definitions
that we reject in the theory. Thus, we may ask, e.g., “What does this word

Tt is clear that any such a sequence is made up of so-called ‘sentence-tokens’, not of
so-called ‘sentence-types’. Likewise, a sentence is a sequence of word-tokens, and a word
is a sequence of morpheme-tokens. Nevertheless, in speaking further about a sequence of
certain language units, we shall sometimes omit the word ‘token’, in order to not overload the
terminology.
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(or expression, sentence, text) mean in the literal (or metaphorical, allegorical,
moral, Platonic, Fregean, narrow, wide, common, etc.) sense?” So, our
acceptance of terms sense and meaning differs from Sinn and Bedeutung of
Frege’s famous paper of 1892. We discuss the difference further.

e In Sect.[3] we discuss topology and order structures underlying an admis-
sible text considered as a means of communication. The linguistic communi-
cation may be adequately modelled by a formalism that takes as its object of
study texts and discourses in their production and interpretation.

Whatever the human language is, the speaker produces an utterance when
putting words one after another in an acoustic string. The listener is forced
to interpret such a chain of sounds without the possibility of suspending its
course with the purpose to return or to make a leap forward. Everyone knows
this property empirically, owing to personal experience of speaker and listener;
it should undoubtedly be taken into account by everyone who writes a text
intended for a human understanding. We argue that such a fundamental feature
of linguistic behaviour enables us to endow an admissible text X with the
structure of a finite 7 topological space where the set of opens O(X) is the
set of all meaningful parts of a given text X. We call phonocentric such a
topology defined on the text X.

It is well known that the category FinTOPy of finite T topological spaces
with continuous maps is isomorphic to the category FinORD of finite partial
ordered sets (posets, for short) with order preserving maps[?] We consider two
functors L and @ establishing such an isomorphism between these categories.
It allows us to define on an admissible text topological and order structures, both
of deep and surface kinds. The writing process consists in endowing the text
with the surface structure of so-called linear ‘word order’ (and corresponding
topology). The process of interpretation consists in a backward recovering of
the deep structure of the specialization order (and corresponding phonocentric
topology) on the text.

Thereafter, we define a phonocentric topology in a similar manner at each
semantic level of an admissible text. The mathematical interpretation of dif-
ferent linguistic notions in terms of topology and order is a kind of topological
formal syntax.

o In Sect. 4] we elaborate in mathematical details the aforesaid topological
formal syntax. We argue that the Ty-separability and the connectedness of a

2See, for instance, [|8,23].
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phonocentric topology are two linguistic universals of a topological nature.

e In Sect. 5] we study the process of understanding of an admissible text
considered as a means of communication. To understand a text or a compound
expression is to grasp what it means, i.e., what communicative content it
conveys. Thus, the understanding of a text during its reading is a dynamic
process that develops gradually as the reading progresses over the time.

On the other hand, a speaker (a writer) uses words as a preexisting means
to express thoughts, and one combines them to convey thoughts one wants to
communicate. So the meaning of a compound expression is determined by the
meanings of its (meaningful) constituents, as well as the meaning of the whole
text is determined by the meanings of its (meaningful) parts.

In the traditional hermeneutics, the relationship between the understanding
of (meaningful) parts and the understanding of the whole text was conceived
as a fundamental principle of text interpretation called the hermeneutic circle.
As its counterpart in linguistic theories, there is a need for some principles
those describe how the passage from the meanings of parts to the meaning of
the whole and the passage in the reverse direction are proceeding. In logic,
linguistics and philosophy of language, there exist such two complementary
principles both traditionally ascribed to Frege, namely the compositionality
principle and the contextuality principle, those manifest itself in different terms

following a particular theoretical framework.

According to J. F. Pelletier [26] p. 89], R. Carnap was the first to attribute
the compositionality principle explicitly to Frege in Meaning and Necessity
[3]], where he stated this principle in terms of a functional dependence. The
majority of researchers followed him when formulating their definitions of
Frege’s compositionality principle in the mathematical paradigm of a function.
To illustrate this, we cite a few definitions:

[...]the meaning (semantical interpretation) of a complex expression is
a function of the meanings (semantical interpretations) of its constituent
expressions. (J. Hintikka [[14, p.31])

Like Frege, we seek todo this [ ... ] in such a way that[ . .. ] the assignment
to a compound will be a function of the entities assigned to its components.
(R. Montague [24] p.217])

[...] The meaning of a whole is a function of the meanings of the parts.
(B. H. Partee [25} p.313])

In many similar definitions, the meaning of a compound expression is set to be
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a function of the meanings of its parts, whereas what the meanings are differs
substantially. Also, these definitions remain reticent about the explicit form of
a function concerned. In sharpening her definition, B. H. Partee notices that
“the Principle of Compositionality requires a notion of partwhole structure that
is based on syntactic structure”, and then she modifies the latter definition to
the following one:

The meaning of a whole is a function of the meanings of the parts and of
the way they are syntactically combined. (B. H. Partee [25, p. 313])

Nevertheless, the modified definition of the compositionality principle remains
implicit with regard to the function it refers to. In fact, the pages subsequent
to definitions of compositionality principle in [25, p.313] are devoted to the
discussion of how one may explicitly define the input values (arguments) of
such a function, and describe how this function acts on its arguments, and what
it returns as output values. On this way, B. H. Partee leads the reader to the
formal definitions given in the Montague’s seminal paper [24].

To sum up our discussion, we have to note that in agreement with the
tradition going back to Carnap, almost all generally accepted definitions of the
compositionality principle convey the mathematical concept of a function in a
set-theoretic paradigm.

In the contemporary mathematics, there are different formalizations of the
concept of a function and functional dependence. In a prevailing set-theoretic
paradigm, a function (map, mapping) is identified with its graph. Formally, a
function f: X — Y isasetof ordered pairs f C X x Y (a graph) that satisfies
the following two Claims:

1° For every argument’s value x € X, there exists a function’s value y € Y
such that (z,y) € f;

2° This function’s value y is unique as such, that is, whenever (z, y) and (z, z)
are members of f, then y = 2. Thus, all functions are single-valued.

Intuitively, for an ordered pair (x,y) € f, a function f is a ‘rule’ that assigns
the element y to the element x. This y is the value of f for the argument x, that
is denoted usually as y = f(x).

What is a function in the set-theoretic paradigm is understood in an unam-
biguous manner by all the scientific community, and the rigorous definition
of a function is therefore imposed on any attempt to clarify a vague notion
that bears in germ the idea of functional dependence. This is also true for
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the notion of compositionality in natural language semantics. Any attempt to
define explicitly the principle of compositionality as a function f: X — Y
in the set-theoretic paradigm meets with serious technical problems to explain
what are these sets X, Y, and how is defined the functional graph f C X x Y.
This is a difficult task and even a trap for any attempt to translate literally the
set-theoretic notion of a function into the linguistic notion of a compositionality.

The aim of an adequate semantic theory is to conceptualize how the under-
standings of parts are integrated during the process of reading to produce the
understanding of the whole. However, any semantic theory that combines the
compositionality defined as the functionality (meant in the ‘function as graph’
paradigm) with the non-postponed understanding (meant as a dynamic process
that develops step by step while the reading progresses over the time) should
be obviously inconsistent.

There are two main directions in which the solution of this apparent conflict
might be sought:

o either one conserves the compositionality meant as a set-theoretic func-
tionality but refuses to take into account the process of text understanding
over the time, and then establishes a kind of static semantics;

o or otherwise, one renounces of compositionality meant as a set-theoretic
functionality, or somehow redefines it, and then studies the process of
text understanding over the time, in order to establish a kind of dynamic
semantics.

If the semantic compositionality is taken to be the functionality in a set-
theoretic paradigm, then it imposes the almost indubitable conclusion that
Frege had never explicitly stated (in this way) the principle of semantic compo-
sitionality generally ascribed to him, whatever it were, the compositionality of
Sinn or the compositionality of Bedeutung. In several papers, T. M. V. Janssen
had carefully analyzed the development of Frege’s views on such a semantic
compositionality during his long scientific career, and then concluded, as a
result, that Frege “would always be against compositionality” [[15} p. 19]. An-
other point of view is expressed by F. J. Pelletier who writes in a solid historical
research that “Frege may have believed the principle of semantic composition-
ality, although there is no straightforward evidence for it and in any case it does
not play any central role in any writing of his [...].” [26, p. 111].
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However, another theoretical view on the part-whole text structure without
prejudice to define the compositionality as a kind of the set-theoretic func-
tionality allows us to interpret Frege’s views on the subject in a different way.
We notice that in the unpublished work Logic in Mathematics of 1914, Frege
writes:

As a sentence is generally a complex sign, so the thought expressed by it is
complex too: in fact it is put together in such a way that parts of the thought
correspond to parts of the sentence. So as a general rule when a group of
signs occurs in a sentence it will have a sense which is part of the thought
expressed. (G. Frege [10l pp. 207-208])

In this translation, the expression ‘will have a sense’ concerning a group of
signs should really mean ‘will be understandable’. In fact, it is an implicit
expression of the hermeneutic circle principle in the particular case of a stand-
alone sentence. In a general case, this principle prescribes ‘to understand a
part in accordance with the understanding of the whole’. It means that
Frege believed the hermeneutic circle principle at the semantic level of a stand-
alone sentence. As a logician, Frege was interested primarily in a particular
case of sentences, that is, in judgements. It does not really matter whether
Frege was familiar with the philological discipline of hermeneutics or not.
The principle of hermeneutic circle reveals one of key cognitive operations
involved in a natural language text (or discourse) understanding process, and
so it is implicitly known by any competent language user. We argue that
the hermeneutic circle principle carries in germ the mathematical concept
of a sheaf, which expresses a passage from a local data to the global one,
and which is very close to the idea of a functional dependence. From the
sheaf-theoretic point of view, one can revise the aforesaid Frege’s quotation
like this: ‘a family of compatible understandings of parts of the sentence are
composable into the understanding of the whole sentence’. However, Frege
considered words as being elementary units of a sentence, and he believed in
the contextuality principle, bearing today his name, in accordance with which
words have no meanings in isolation, “but only in the context of a sentence” [9].
We hypothesize that the reluctance to be got involved into the confusion between
elements and parts of a whole (between “words [ ...] in isolation” and “parts
of the sentence” in his formulations) prevented Frege from stating explicitly
what would be called the compositionality principle. Surely, a meaningful
sentence has some meaningful parts, the meanings of which are constitutive
to the meaning of this sentence as a whole; but not every of word-tokens may
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be found among such meaningful parts. This is a kind of the type difference
between an element and a subset of a given set.

For an adopted sense .% of reading of a given text X, to each non-empty
open (that is to say, meaningful) part U C X we assign the set #(U) of all
its meanings that may be grasped in all its possible readings in this sense.
In fact, it assigns naturally a presheaf .# of fragmentary meanings to the
adopted sense of reading. In the beginning of Sect. 5, we argue that such a
presheaf .% should satisty to both Claims S and C needed for a presheaf to be a
sheaf. Thus, the presheaf .7 (U) of fragmentary meanings attached to a sense
(mode of reading) of an admissible text is really a sheaf. This statement is
our generalization of Frege’s compositionality principle in the sheaf-theoretic
framework. The issuing sheaf-theoretic formal semantics takes its departure
from another formalization of a functional dependence that is based on the
mathematical concept of a sheaf. We use this revised concept of functional
dependence in order to define explicitly what is, or rather what should be
the compositionality of fragmentary meanings. In this generalized concept of
functionality, the arguments and their numbers are not given in advance (one
takes for arguments any family of locally compatible sheaf sections); but due
to the Claim C, for every such a family of arguments, there exists the global
sheaf section that becomes their composition; and due to the Claim S, this
composition is unigue as such. In the Subsect.[5.I|we show that these Claims C
and S are analogous to those Claims 1° and 2° in the aforesaid formal definition
of a function in a set-theoretic paradigm.

e So far, we have considered only the meanings of open sets in the phono-
centric topology that we have defined in Sect. 3 at any semantic level. Then,
in Sect. @, we describe how we have to define the meanings of points in the
phonocentric topology at any semantic level. For this goal, we recast a famous
Frege’s contextuality principle in order to define the set of contextual meanings
of any point x that belongs to the phonocentric topological space X of some
semantic level, whatever this point £ may be, a word, a sentence, a paragraph,
etc., when considered as an element of a syntactic entity of the higher type. For
any semantic level, it is the distinction between the notion of a contextual mean-
ing of a primitive element (a point) at this level and the notion of a fragmentary
meaning of a part (a subset) of the whole at this level, that is, of the whole space
endowed with a phonocentric topology. The contextual meaning of a point x
is defined to be the inductive limit of fragmentary meanings s of different open
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neighbourhoods U > z those are got identified on some smaller common open
neighbourhood of x. Finally, we generalize Frege’s contextuality principle in
the categorical terms of bundles of contextual meanings.

e In Sect. [/, we show that these generalized Frege’s compositionality and
contextuality principles are related by a duality that we formulate in terms of
category theory, and that we name after Frege. This sheaf-theoretic duality
sheds new light on the delicate relation between Frege’s compositionality and
contextuality principles, in revealing that the acceptance of one of them implies
the acceptance of the other. It resolves Frege’s embarrassing situation with the
reconciliation of two principles those bear now his name. As two sides of the
same coin, Frege’s compositionality and contextuality principles express indeed
two complementary parts of the hermeneutic circle principle. That is why they
always come together in philosophy, linguistics, and logic. Grosso modo,
the compositionality principle prescribes to understand a meaningful whole
by means of understanding of its meaningful parts, whereas the contextuality
principle prescribes to understand the meaning of an entity in accordance with
the understanding of its meaningful neighbourhoods.

e Once explicitly stated, Frege duality gives rise to a functional representation
of fragmentary meanings. In Sect. [§] this functional representation enables us
to develop a kind of compositional dynamic semantics that describes how
the interpretation proceeds over the time as the step-by-step extension of a
meaning representation function, from the initial meaningful fragment to the
whole interpreted text. Defined in the proposed sheaf-theoretic framework,
such a dynamic semantics conceptualizes the compositionality in a uniform
manner at each semantic level: word, clause, sentence, paragraph, section,
chapter, text as a whole. Moreover, it treats the polysemy in a realistic manner
as one of the essential features of a natural language. This sheaf-theoretic
dynamic semantics provides the mathematical model of a text interpretation
process, while rejecting attempts to codify interpretative practice as a kind
of calculus. We call such a mathematical model of a natural language text
interpretation process as formal hermeneutics (see, e.g., [29,31}32]).

e Then, in Sect.[9] we compare the compositional dynamic semantics pro-
posed in our sheaf-theoretic framework with several algebraic compositional
semantics. We notice that an algebraic semantic, of whatever kind, is always
static because the meaning of the whole sentence is calculated just after the
calculation of meanings of all its syntactic components was done. Algebraic
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semantic theories are appropriate to study the synonymy, but their irremovable
drawback is the inability to describe the polysemy. Any kind of formal gram-
mar that formalizes the compositionality as the functionality in a set-theoretic
paradigm shares this fallacy with an algebraic semantics described by T. M. V.
Janssen in [15] as “a homomorphism from syntax to semantics”.

By contrast, the proposed mathematical framework formalizes the composi-

tionality of fragmentary meanings in a sheaf-theoretic paradigm of functional
dependence. In this formal framework, the dynamic semantics describes how
the interpretation is incrementally built up as a meaning representation func-
tion stepwise extension from the initial meaningful fragment to the whole text.
Moreover, in this approach the process of a natural language text interpretation
is modelled in a similar manner at all semantic levels.
e The present article culminates in the final Sect.[I0|devoted to the statement
of a sheaf-theoretic formal hermeneutics that describes a natural language in
the category of fextual spaces Logos. Appeared as syntax and semantics
of a natural language, phonocentric topologies and sheaves of fragmentary
meanings constitute together an adequate mathematical framework to formalize
different linguistic phenomena in our works, such as linguistic universals of
geometric nature in [29], as dynamic semantics in [34]], as interpretations of
one text by the others, as text summarization and abstracting, as well as many
other aspects of intertextuality in [31].

2. Basic semantic concepts

Concerning the linguistic terminology to be used in this work, we have certain
difficulties because the sciences of language do not have a unified terminology.
According to F. Rastier [37]], two traditions seem dominant in the sciences of
language: (1) the grammatical tradition centered on the issue of the sign, that
confines itself to the word and the sentence; (2) the rhetoric and hermeneutic tra-
dition centered on the communication, that privileges the text and the discourse.
Based on different conceptions, these two traditions differ in problematic and
in terminology. When using the definition of a technical term proper to one
doctrine, we have to privilege this doctrine compared with others, that would
not be our goal. The aim of our work is to discern the mathematical structures
underlying the process of reading, with the purpose to design a semantic theory
that formalizes a natural language understanding process in a uniform manner
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at all semantic levels (word, sentence, text). We are therefore obliged to accept
a terminology based on distinctions that are valid at all semantic levels of an
admissible text. In this perspective, we have to study only those spoken or
written language segments that are admissible as units of linguistic communi-
cation. Therefore, we keep to the hermeneutic tradition in the analysis of a text
understanding process. We recognize that there are different scientific trends in
discourse analysis; that is why we have to clarify basic semantic terms we use
in the present paper. The technical acceptance of terms meaning, sense, and
reference as these are used in the present paper may be explained as follows:

Meaning. The term fragmentary meaning of some fragment of a given text X
is accepted as the communicative content grasped in some particular situation of
reading. Inthis terminological acceptance, a fragmentary meaning is immanent
not in a given fragment of a text, but in the interpretative process of its reading
based on the linguistic competence, which is rooted in the social practice of
communication with others through the medium of a language. Any reading
is really an interpretative process where the historicity of the reader and the
historicity of the text are involved. The understanding of meaning is based not
only on the shared language but also on the shared experience as a common
life-world, and it deals so with the reality. According to Gadamer, this being-
with-each-other is a general building principle both in life and in language.
The understanding of a natural language text results from being together in a
common world. This understanding as a presumed agreement on ‘what this
fragment U C X wants to say’ becomes for the reader its fragmentary meaning
s. In this acceptance, the meaning of an expression is the communicative
content that a competent reader grasps when s/he understands it; and such
an understanding can be reached regardless of the ontological status of its
reference.

The process of coming to some fragmentary meaning s of a fragment U C X
demonstrates a human communicative ability in action. When we qualify
some fragment as being meaningful, we state that an idealized competent
reader can understand a communicative content that this fragment conveys; the
understanding manifests itself as the ability of the reader to express at once this
content in other words or in another language (e.g., if the reader is bilingual).

The fact of having such an understanding may be labelled with a certain
abstract entity s called fragmentary meaning of U. When someone acknowl-
edges the fact that a meaning of U has been understood, this situation may be
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described by saying that ‘this fragment U has the fragmentary meaning s’; it
presumes implicitly that the understanding of the meaning s of the fragment U
is arrived at through some linguistic communication, direct or mediated. This
meaning may be shared in a dialogue with another native speaker, and such
a possibility describes the ontological status of the meaning s as being some
abstract entity subtracted from the linguistic communication. This situation
may be summed up by an external observer as ‘the understanding of the frag-
mentary meaning s of a fragment U’, where the ‘meaning’ may be perceived
as a linguistic term in our technical acceptance, and also as an ordinary word of
English language. So, our use of the term fragmentary meaning corresponds
well to the common English usage.

We have noticed above that for any admissible text X, one should distinguish
a fragmentary meaning of a meaningful part U C X and a contextual meaning
of an element (point) x € X. It expresses the fact that clauses are parts of
a sentence, but idioms and words are its indivisible elements. A fragmentary
meaning s is assigned to the part U C X, and this s conveys some part of
the communicative content of the whole X in a concrete situation of linguistic
communication. This part U is a sequence of primitive elements (tokens) x
those have contextual meanings in the context of U.

In the situation of linguistic communication, a unit that is proper to convey
a communicative content may be some text or its fragment, some sentence or
its clause, some elliptic expression, and yet a word or an exclamation in certain
cases of communication. Thus, a meaning is related to the communicative
content, regardless of its possible truth value, whatever it may be: true, false
or indefinite.

However, the linguistic communication, either spoken or written, consists
of the use of words in a conventional way. It is quite difficult to trace the
history of how a single word enters the lexicon (vocabulary) of a language.
Taken beyond the situation of linguistic communication, a single word is not
a discourse nor a part of it, and this word says nothing to nobody. But this
word had entered the lexicon in the process of repeated participation in a
variety of situations of linguistic communication, with the result that native
speakers of the language have a clear idea of the situations in which the use of a
particular word is appropriate, and what it then means. These so-called literal
meanings of words are recorded in the dictionaries and thesauruses. Generally,
by means of examples, these dictionaries allow us to understand what meaning
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is associated with the use of each word in several standard situations of its
use. In this way, dictionaries define the abstract objects those are called the
literal meanings of words. Such definitions carry the entire history of the
language and the experience of the numerous uses of the words in the specific
situations of communication. The dictionaries thereby demonstrate that the
relationship of each word with the set of its possible meanings in specific
contexts had gained a normative value. This usage is normative for native
speakers of a particular linguistic community, in a particular historic period.
These descriptions are aimed to help for a competent reader to adjust better
the orientation of his/her efforts to grasp a meaning. In this terminological
acceptance, a word, a fragment, a text has a specific meaning only in the
situation of linguistic communication, direct or mediated.

However, when using a particular expression in a particular situation of lin-
guistic communication, each interlocutor establishes his/her own connection
between this expression and its meaning, which is a mental concept (signified),
grasped by means of this expression used in this particular situation of commu-
nication. This meaning is the mental concept concerning either some physical
objects of the world, or some ideas, or some fictional entity, but this meaning is
not itself a referred object in the world (in contrast to Frege’s Bedeutung). As
the mental concept, this meaning is apprehended as a being of intersubjective
nature because it may be shared with native speakers of the same linguistic
community. We equate the ‘meaning’ with the ‘communicative content’ be-
cause a message (in spoken or written form) is intended by its author as a carrier
of a certain communicative content to be grasped by the addressee, that is, as
a carrier of a certain meaning to be understood.

Let us take for example the word ‘wolf’. A hunter, a scientist zoologist, an
adult urban dweller who have never seen of living wolves, or a child who is
familiar with them only by fairy tales, they all have different concepts conceived
in connection with the word ‘wolf’. The ostensive definition of the meaning of
this word by pointing out wolves in a zoo, and its definition by dictionaries as a
‘wild, flesh-eating animal of the dog family’ are conveying different concepts.
It implies certainly that an adequate semantic theory should take into account
that a lexicon of a competent reader counts not only one but several literal
meanings of the word ‘wolf’. Every competent native speaker knows also
about the use of this word in one of figurative senses, for example, in the moral
sense of the proverb: “Who lives with the wolves should howl like a wolf”.
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Itis, therefore, the intention of the reader that controls the choice of meanings
during the reading. Which of possible meanings of a particular expression is
grasped by the reader depends on the specific situation of reading guided by the
reader’s intention in the interpretative process, presuppositions and preferences,
that we denominate by the term sense (or mode of reading).

Sense. In our acceptance, the term sense (or mode of reading) denotes a kind
of semantic orientation in the interpretative process that relates to the whole
text or its meaningful fragment, to some sentence or its syntagma, and involves
the reader’s subjective premises that what is to be understood constitutes a
meaningful whole. Concerning a word-token of a phrase, one may ask a
question “What does this word mean here in a literal sense?”, and as we have
argued above, an answer consists of the choice of only one meaning from the
set of many possible ones. Likewise for a question, “What could it mean in
a metaphoric sense?”, as for many similar questions in a reading process. In
such an acceptance, the term ‘sense’ is correlative to the intentionality of our
interpretative efforts; that is, a sense is not immanent to the text we read, but
in some way, it may even precede the reading process. For example, one may
intend to read a fable in the moral sense yet in advance of its reading. But
when the reading unfolds in time, one still controls own intentions following
the current reading situation. These examples illustrate the acceptance of the
term ‘sense’ as the reader’s interpretative intention, and the acceptance of the
term ‘meaning’ as the content actualized during the process of communication.

To some extent, our acceptance of the term ‘sense’ is close to the exegetic
conception of four senses of the Holy Scripture. The traditional presentation of
this conception of biblical hermeneutics is summarized by the famous distich
of Augustine of Dacia: “Littera gesta docet, quid credas allegoria, moralis quid
agas, quo tendas anagogia.’

According to the biblical hermeneutics, the readings of the Scripture in
literal, allegorical, moral, and anagogical senses are coherent in each of its
parts. Suppose we read the whole text of the Scripture by fragments, where
each fragment was read in one of four senses: literal, allegorical, moral, or
anagogical, but the choice of sense was not the same for all fragments. The
composition of these four senses is a method of interpretation that gives rise

3Augustine of Dacia, Rotulus pugillaris, 1: ed. A. Walz: Angelicum 6 (1929) p.256. The
distich is translated in English as: “The letter tells us what went down, the allegory what faith
is sound, the moral how to act well — the anagogy where our course is bound.”
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to a large number of senses of the whole text. Indeed, the overall sense .%, as
the integral intention in the reading process, is the result of all local intentions
taken during these partial readings.

But what guides the subsequent choice of local intentions of an empirical
reader? Following Fathers of Church, it is the presence of the Holy Spirit that
guides the soul of the individual believer who reads the text of the Scripture.
But for a secular text, how can we characterize in linguistic terms the possibility
to join these partial senses? It is the presumed sincerity and a goodwill on the
part of the author, whom we suppose to be of sound mind and perfect memory,
while writing this text intended to communicate something to an alleged reader.

However, the local intentions those were taken in the writing process were
got integrated into an overall intention of an empirical author; so, these partial
writings are consistent to satisfy a certain gluing condition of the type that
we discuss further in Sect. [5.4] Since the empirical author is almost always
inaccessible for a dialogue, how can we understand what does the text mean
by virtue of its textual coherence denoted by U. Eco as the intentio operis?
According to U. Eco [7, p. 65], “itis possible to speak of the text’s intention only
as the result of a conjecture on the part of the reader. The initiative of the reader
basically consists in making a conjecture about the text’s intention.” He asks
further, “How to prove a conjecture about the intentio operis?”, and he responds:
“The only way is to check it upon the text as a coherent whole.” He continues
then that this idea comes from De doctrina Christiana of St. Augustine:

[...] any interpretation given of a certain portion of a text can be accepted
if it is confirmed by, and must be rejected if it is challenged by, another
portion of the same text. [7, p. 65]

According to St. Augustine, the presumed textual coherence controls the
partial interpretations that are made by an empirical reader. Therefore, in the
process of reading, all these local intentions to understand a text have also to
verify the gluing condition of the type that we discuss further in the Sect. 5.4.

In the process of actual communication, a mere consistency of the local
interpretations would be insufficient. The inference on the speaker’s intention
is essential here for the understanding; the contact of interlocutors allows them
to get into the coordination between the intention of the sender and the intention
of the recipient.

With regard to a text produced not for a single recipient, but for a community
of readers, the strategy of a model author is to lead his model reader to
speculate about the text. Among these leading indexes, the central place is
held by the semantic isotopy that A. J. Greimas defines as “a complex of plural
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semantic categories which makes possible the uniform reading of a story.” [[12,
p. 188]. Concerning the notion of isotopy, U. Eco notices in [6, pp. 189-190]
that “The category would then have the function of textual or transsentential
disambiguation, but on various occasions Greimas furnishes examples dealing
with sentences and outright noun phrases.”

Following B. Pottier, the seme does not exist in isolation but as a part of a
sememe, or as the set of coexisting semes.

Le sémeéme, I’étre de langue (en compétence), s’actualise dans le discours
[...]. Le sémeéme donne le sens (I’orientation sémantique), et la mise en
discours le transforme en significationf][27] pp. 66, 67]

From this definition, we retain the acceptance of the term sense as the
semantic orientation of the reader’s intentions provoked by a sememe, and the
fact that a meaning is actualized in the discourse. The reader’s conjecture on
the subject discussed in a text determines the first interpretive intention that
will be clarified in the course of the reading when the recognition of a semantic
isotopy becomes possible owing to the context that is more and more revealed.
Following U. Eco,

The first movement toward the recognition of a semantic isotopy is a con-
jecture about the topic of a given discourse: once this conjecture has been
attempted, the recognition of a possible constant semantic isotopy is the
textual proof of the ‘aboutness’ of the discourse in question. [7, p. 63]

In Two Problems in Textual Interpretation published in 1980, U. Eco de-
scribes the interpretative process as based on the reader’s interpretive cooper-
ation:

Between the theory that the interpretation is wholly determined by the
author’s intention and the theory that it is wholly determined by the will of
the interpreter there is undoubtedly a third way. Interpretive cooperation
is an act in the course of which the reader of a text, through successive
abductive inferences, proposes topics, ways of reading, and hypotheses
of coherence, on the basis of suitable encyclopedic competence; but this
interpretive initiative of his is, in a way, determined by the nature of the
text. [2, pp. 43-44]

But later in 1992, in the analysis of so-called superinterpretation, U. Eco
raises again the problem of a reader’s conjectures about the empirical author’s

4Our translation of this quotation is: “The sememe, the entity of language (in competence),
is actualized in the discourse [...]. The sememe gives the sense (the semantic orientation),
and the putting into discourse transforms it into meaning.”
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intention during the reading. His updated conception of the interpretation
of texts “makes the notion of the intention of an empirical author radically
unnecessary” [7, p.60]. He defends this thesis with the support of his own
experience as a writer who has discussed with his readers a few different
interpretations of his novels.

To summarize now our acceptance of the term sense (or mode of reading),
we have to say that it is close to the latter acceptance described by U. Eco. The
term sense concerns the reader’s initiative in the interpretation of the text; it is
wholly determined by the reader’s intention to understand possible meanings
of the text. In Sect. 5, we identify a particular sense .% (in our acceptance)
with the assignment to each meaningful fragment U of a given text X the set
of all its meanings .# (U ) that may be grasped in all possible readings of U in
this sense .%. This way, to any sense (or mode of reading), we assign a sheaf
of fragmentary meanings.

Remark. It should be noticed that our terminological acceptance of basic se-
mantic notions of sense and meaning differs from their acceptance in the theo-
ries developed within the tradition that goes back to Carnap’s semantic theory,
sometimes called the theory of “intension and extension”. In such theories,
expressions of different syntactic kinds refer to entities of different kinds as
their extensions, and also refer to entities of different kinds as their intensions.
The terms intension, intensional are not to be confused with the terms intention,
intentional we have discussed above. The notions ‘intension’, ‘intensional’ pri-
marily concern the domain of logic, whereas ‘intention’, ‘intentional’ concern
the philosophy of mind. According to A. R. Lacey, “Intuitively extensions
can be thought of as the extents which certain kinds of terms range over and
intensions as that in virtue of which they do so.” |18} p. 164], whereas the
intentionality is “that feature of certain mental states by which they are directed
at or about objects and states of affairs in the world” [18, p. 50].

Reference. Certainly, the referential function of a language is important in
the linguistic communication, which concerns the world where the interlocutors
live. A natural language has a huge arsenal of denoting expressions to designate
real and imaginary objects during communication. The linguistic competence
is characterized by the know-how in production and comprehension of natural
language expressions realizing the referential relationship called reference or
denotation. In the analytic philosophy of language, the study of denoting
expressions plays a considerable role, because the reference to objects with an
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uncertain ontological status is responsible for some logical paradoxes.

In the present work, we assume a total referential competence of an idealized
reader who knows the lexicon of a language and follows the rules of common
usage. In short, we assume that the reader has a total language skill, combined
with a general knowledge. Such a reader meets no problems to understand
the meaning of denotative expressions and the ontological status of objects so
defined.

3. Topologies appeared as syntax

The author of an admissible text doesn’t suppose that the reader’s understanding
will be suspended until the end of reading because everybody knows that the
words already read trigger intellectual mechanisms of interpretation based on
the indissoluble links between the signifier and the signified. To be understood
in linguistic communication, one must take it into account and organize one’s
writing in such a way that the reader’s understanding at every moment may be
arrived at on the basis of what has been already read. It seems that the primacy
of speech over writing is a cause that implies in writing the subordination of
graphic expressions to acoustic ones. A spoken utterance is a temporal series
of sounds produced by a speaker using a human articulatory apparatus. When
written, an acoustic signal is converted into a series of signs whose positions are
linearly ordered following an adopted convention; in English, it is from left to
right within the lines, and from top to bottom between them. Once a particular
sign is taken as the initial, it allows us to specify the position of the following
signs by enumeration. From the mathematical point of view, the whole segment
may be considered as a finite sequence when the last sign is specified. Thus,
we ought to consider a text X as a finite sequence (x1,x2,x3, ..., x,) of its
constituent sentences x;, and so it is formally identified with the graph of a
function ¢ — x; defined on some interval of natural numbers. When reading
a particular fragment of the text X, we delete mentally the other sentences but
follow the induced order of remaining ones. Important is the induced order
of their reading and not the concrete index numbers of their occupied places.
Thus, any part of the text is a subsequence whose graph is a subset of the whole
sequence graph. Likewise for a sentence considered as a finite sequence of its
words.

While reading a text, the understanding is not postponed until the final sen-
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tence. So the text should have the meaningful parts, and the meanings of these
parts determine the meaning of the whole as it is postulated by the hermeneu-
tic circle principle. For the meaningfulness conveying an idealized reader’s
linguistic competence, a meaning of a meaningful part is the communicative
content grasped in a particular reading of this part guided by the reader’s pre-
suppositions and preferences in the interpretative process, that is, guided by the
sense (or mode) of reading.

Certainly, there are many meaningful fragments in the text. A simple example
of a meaningful fragment is supplied by the interval including all sentences,
from the first x; until the last x,,. Anybody reads the text as if it would be
a written transcription of the story uttered by the author. When telling or
writing a story, an author should take into account that the understanding can’t
be postponed, for “the texts never know the suspense of interpretation. It is
compulsive and uncontrollable”, as it is noticed by F. Rastier in [36]. If the
author don’t want to be misunderstood, s/he has to organize the text in such a way
that any sentence x is preceded by certain sentences those provide a necessary
context for the understanding of z. Thus, any meaningful part contains each
sentence together with some its context, and this is characteristic of any part
to be meaningful. It is clear that this property fails for a part including, e.g.,
all sentences x; whose placehold number ¢ is divisible by 100, and that is why
this part is meaningless, and nobody try to read the text in such a manner.
In [28, 3133, we argue that in agreement with our linguistic intuition, the set
of all meaningful parts of any admissible text should satisfy two properties:

(t1) The union of any set of meaningful parts is a meaningful part.
(ta) The non-empty intersection of two meaningful parts is a meaningful part.

The first property (t1) is taken for granted, because it expresses the precept of
generally accepted hermeneutic circle principle, which ensures us to understand
the union of a given set of meaningful parts through the understanding of all
its constitutive members. In the union of any set of meaningful parts, each part
contains every its sentence together with some its context, whence the union
itself is a part that has such a property. To be more accurate, we have to take
into account that the meaning s of a meaningful part U isn’t immanent to this
part itself, but this meaning is grasped in the reading process following a sense
(mode of reading) .# guided by the reader’s interpretative intentions. Thus, in
the statement (t;), some sense (or mode of reading) .% is implicitly presumed
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to be the same for all members of the union. In the following Sect. 5-8, we
discuss in details how the resulting meaning of the whole is obtained via the
meanings of its constitutive parts.

The second property (t2) expresses the contextuality of understanding. To
understand a meaningful part U of the text X is to understand contextually
all sentences x € U, where the context of a particular sentence = is some
meaningful part W such that x € W C U. In the standard process of reading
(i.e., from the beginning up to z), this part W should contain a subsequence of
sentences those precede x and provide a necessary context for the understanding
of x in the sense .#. For a particular sense .%, there should exist a smaller
subsequence (x;, ..., z;,,) C W whose sentences have been understood during
the reading, and then have been taken into account at the moment when the
reader understands a meaning of x grasped in the sense .%. Let us denote
Uz = (24y,...,i,). The tokens x;, of U, may be consecutive or dispersed
among other tokens of W, it does not matter, but they should be read before
the reading of x.

Consider first the case of one session process of reading of X in some sense
%#. When the part U, belongs to any meaningful part W C X such that
x € W. Let U, V be two meaningful parts such that z € U N V. According
to our premises, z € U, CUandx € U, C V;hencex € U, CUNV.

Consider now the case when x € U NV, and parts U, V were read in two
different sessions of reading, but in the same sense .%. This means that the
reader is self-identical, and the reading is guided by the same intentionality. It
implies that U, CU and U, C V. Hencexz €c U, CUNV.

Thus in both cases, U NV is meaningful because U NV = Uzeyny Uy is
the union of meaningful parts, due to (t1).

Since an admissible text X is supposed to be meaningful as a whole by the
very definition, it remains only to define formally the meaning of its empty part
(for example, as a singleton) in order to satisfy the third property:

(t3) The whole admissible text and the empty part are meaningful.

This enables us to endow an admissible text X with some topology in a strict
mathematical sense, where the set O (X') of open sets is defined to be the set of
all meaningful parts. We call the topology so defined phonocentric topology to
indicate in its name the subordination of graphic expressions to phonetic ones.

An admissible text X gives rise to a finite space; hence an arbitrary inter-
section of its open sets is open and so it is an Alexandrov space.
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In general, a topology on a set X is defined by specifying the set O(X) of
open subsets of X satisfying axioms similar to ours (t1), (t2), and (t3). But
almost always it is impossible to enumerate all the open subsets. Instead, a
topology is usually defined by specifying a smaller set of open subsets, called
a basis, and then generating all the open subsets from this basis.

Likewise, when studying the process of interpretation of an admissible text
X, many of linguistic concepts may be well expressed in terms of the phono-
centric topology on X that is defined by specifying the set of open subsets
O(X) to be the set of all meaningful parts satisfying properties (t1), (t2), and
(t3). However, it will be more convenient and useful to develop the theory in
more concrete, say even constructive, terms of empirically given meaningful
parts those constitute a basis for a phonocentric topology.

Fortunately, the set of all meaningful parts O(X) of a given text X may
be described by specifying a class of fairly simple meaningful parts given as
an empirical data related to a reading process. In the reading of a particular
text X, the reader is practically concerned with a smaller class of meaningful
parts (U;)zcx, where each part U, contains a sentence x and provides the
smallest context that is necessary for a reader to grasp a particular meaning of
x. Because the phonocentric topology O(X) is finite, for each x, there exists
such a smallest open neighbourhood U, that is defined as the intersection of all
open neighbourhoods of .

For a given sentence x, the understanding of a whole U, requires the grasping
of meanings of all constitutive sentences of Uy ; hence, for any sentence y € Uy,
its smallest context Uy, should be a part of U,. Suppose now that we are given
two smallest meaningful parts U, and U, such that U, N U, # &. Then for
each 2 € U, NUy, we have U, C U, and U, C Uy; hence U, C U, N U,,.
Therefore, the set B(X) = {U,: € X} is the set of meaningful parts of X
satisfying two properties:

(b1) For each x € X, there exists U, € B(X) such that z € U,.

(bz) For every two U,,U, € B(X) such that U, N U, # @, and for each
sentence z € U, N Uy, there exists U, € B(X) such that z € U, and
U. C U, NU,.

So, the set B(X) is a basis for a phonocentric topology on X, because any
meaningful part (i.e., open) V' C X is the union V' = U,y U, of the members
of some subset of B(X). Recall that a set B of open sets of a topological
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space X is called a basis for its topology if and only if every open set U of
X is the union of the members of a subset of 8. Thus, the class of open sets
(X)) in a phonocentric topology on X is defined by the subclass 8 (.X ) of all
open sets of the type U, that is, a phonocentric topology on X is defined by
the empirical data B (X).

Any explicitly stated concept of meaning or a criterion of meaningfulness
satisfying conditions (t;1), (t2), and (t3) allows us to define some type of dis-
cursive topology on texts, and then to interpret several problems of discourse
analysis in topological terms [31]. In what follows, we consider only admissible
texts endowed with a phonocentric topology that is a particular type of discur-
sive topology corresponding to the criterion of meaningfulness conveying the
linguistic competence of an idealized reader, meant as the ability to grasp a
communicative content.

3.1. Phonocentric topology and partial order

In the ordinary process of reading, any sentence z of a text X should be
understood on the basis of the part already read because the interpretation of
a natural language text cannot be postponed, although it may be made more
precise and corrected in further reading and rereading. In [36], F. Rastier
describes this fundamental feature of a competent reader’s linguistic behaviour
as the following:

Alors que le régime herméneutique des langages formels est celui du sus-
pens, car leur interprétation peut se déployer apres le calcul, les textes
ne connaissent jamais le suspens de I’interprétation. Elle est compulsive et
incoercible. Par exemple, les mots inconnus, les noms propres, voire les non-
mots sont interprétés, validement ou non, peu importe[’[36, pp. 165, 166]

Thus, for every pair of distinct sentences z, y of X, there exists an open part
U containing one of them (to be read first in the natural order < of sentences
reading) but not the other. This means explicitly that the phonocentric topology
satisfies the separation axiom Ty of Kolmogorov.

For a sentence x € X, we have defined the open neighbourhood U, to be
the intersection of all the meaningful parts those contain z, that is the smallest
open neighbourhood of z. The specialization relation x <y (read as ‘zx is

50ur translation of this quotation is: “While the hermeneutic regime of formal languages
is that of suspense, because their interpretation can be deployed after the calculation, the texts

never know the suspense of interpretation. It is compulsive and uncontrollable. For example,
unknown words, proper names, even non-words are interpreted, valid or not, whatever.”
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more special than y’) on a topological space X is defined by setting x < y if
and only if z € U, or, equivalently, U, C U,. Itis clear that z € U, if and only
if y € cl({z}), where cl({z}) denotes the topological closure of a one-point
set {x}.

Key properties of these notions are summarized in the Propositions|I} [2|those
are linguistic versions of general mathematical results concerning the interplay
of topological and order structures defined on a finite set. The proofs may be
found in many sources, as for example, in [23].

Proposition 1. For an admissible text X, the set of all smallest opens {U,.: x €
X} is a basis for a phonocentric topology on X. Since the phonocentric
topology on X satisfies the separation axiom Ty, it defines a partial order < on
X by means of the specialization relation. The initial phonocentric topology
can be recovered from this partial order = in a unique way as the topology
with the basis made up of all sets of the kind U, = {z: z < z}.

Proposition 2. Let X, Y be admissible texts endowed with phonocentric
topologies. Then the following statements are equivalent:

1. The function f: X — Y is continuous.

2. For each x € X, the function f maps a basis set into a basis set, that is
f(Uz) € Uy ).

3. The function f preserves the specialization order, that is x = y implies

f@) = f(y)

Example. A continuous function f1: Xo — X arises in writing process when
an author goes from a first plan X; of some future text to its more detailed plan
Xo, where a sentence x4 of X is substituted by some passage (x4, .. ., Z4,, )-
And so on, in going to more and more detailed texts X3, ..., X,, one gets a
sequence of continuous functions

fn_—g Xn—l

fn—2 1

X, o Byx, Bx, I ox

3.2. Deep structures and surface structures

Let FinTOPy be the category of finite 7p-topological spaces and continuous
maps, and let FinORD be the category of finite partially ordered sets (posets)
and their monotone maps.

Given a finite partially ordered set (X, <), one defines a Tj-topology T
on X by means of the basis for 7 made up of all low sets {z: z < z}.
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Thus, one obtains a functor L: FinORD — FinTOP, acting identically on
the maps of underlying set. Conversely, one defines the specialization func-
tor : FinTOP; — FinORD, assigning to each finite 7y-topological space
(X, 7) aposet (X, <) with the specialization order <, and acting identically
on the maps of underlying set. Thus, the functors L and () establish the iso-
morphism between the category FinTOP( and the category FinORD. From
the mathematical point of view, the study of one of these two categories is
equivalent to the study of the other.

Now we generalize and summarize the considerations of the mathematical
structures of topology and order underlying an admissible text:

The considerations in the beginning of Sect. 3 may be slightly modified
in order to define a phonocentric topology at the semantic level of sentence
and even word [31]. Thus, at each semantic level, there exist two topological
structures:

(i) the natural phonocentric topology at a considered semantic level;

(ii) the topology defined by applying the functor L to the linear order x < y
of reading.

At an arbitrary semantic level (where the whole is a sequence of primitive
elements), the difference between topologies can be summed up so that in the
phonocentric topology the least neighbourhood U, of a primitive element z
contains only such primitive elements that precede x in the linear order of
writing and provide the context necessary to understand the meaning of = in
the adopted sense .% ; whereas in the topology defined by the functor L applied
to (X, <), the least neighbourhood U, of a primitive element = contains all
primitive elements that precede x in the linear order of writing.

Note that the explicit definition of the phonocentric topology at the semantic
level of sentence requires more delicate work in treatment of different gram-
matical types of sentences due to the lack of space, so to speak. Here there is a
certain analogy with the topological classification of varieties that turns out to
be more difficult in dimensions 3 and 4 than in lower and in higher dimensions.

On the other hand, at each semantic level, there exist two order structures:

(i") the specialization order x = vy defined by applying the specialization
functor Q to the natural phonocentric topology of a considered semantic
level;

(ii’) the linear order x < y of ordinary text reading.
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Similar to a generative grammar, we will qualify the equivalent structures
of (i) and (i") as deep structures compared to the equivalent structures of (ii)
and (ii’) qualified as surface structures. We notice that this denomination has
nothing to do with the acceptance of these terms in a generative grammar.

Remark. The relation x < y implies obviously the relation z < y, for all the
primitive units z, y of the same semantic level. In particular, at the level of text,
where the sentences are primitive units, the map id: L(X, <) — L(X, <),
which acts as identity x — x of the underlying set, is a continuous map
of topological spaces. Thus, the necessary linearization during the writing
process, that is the passage from (X, <) to (X, <), results in weakening of the
phonocentric topology by transition from L(X, <) to L(X, <). The process of
interpretation consists in a backward recovering of the phonocentric topology
(or equally, of the specialization order) on the text.

3.3. Phonocentric topology at the level of text

There is a simple intuitive tool for graphical representation of a finite poset,
called Hasse diagram. For a poset (X, <), the cover relation x < y (read as ‘x
is covered by y’) is defined by setting = < y if and only if x < y and there is
no other z such that x < z < y. For a given poset (X, <), its Hasse diagram
is defined as the graph whose vertices are the elements of X and whose edges
are those pairs (z,y) for which x < y. In the picture, the vertices of Hasse
diagram are labeled by the elements of X and the edge (x,y) is drawn by an
arrow going from z to y (or sometimes by an indirected line connecting x and
1, but in this case the vertex y is displayed lower than the vertex x); moreover,
the vertices are displayed in such a way that each line meets only two vertices.

The usage of some kind of Hasse diagram named Leitfaden is widely spread
in the mathematical textbooks to facilitate the understanding of logical de-
pendence of its chapters or paragraphs. Mostly, the poset is constituted of
all chapters of the book. So, in Local Fields by J.-P. Serre [39] and in A
Mathematical Logic by Yu. 1. Manin [21]], there are such diagrams.

These diagrams may surely be ‘split’ in order to draw the corresponding ones
whose vertices are all the paragraphs, like it is done directly in Differential
Forms in Algebraic Topology by R. Bott and L. W. Tu [1]], where authors
suppose indeed the linear reading of paragraphs 1-6, 8-11, 13-16 and 20-22,
but it may be drawn explicitly. These three Hasse diagrams are shown in the

Fig.[1]
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Y\ v Yu. I. Manin [21]
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14 15 R. Bott & L.W. Tu [1]

J.-P. Serre [39]

Figure 1: Leitfiden of J.-P. Serre [39], Yu.I. Manin [21], R. Bott & L. W. Tu [1].

This way, one may go further and do the next step. For every sentence x of
a given admissible text X, one can find a basis open set of the kind U,, in order
to define the phonocentric topology at the semantic level of text (where points
are sentences), and then to draw the Hasse diagram of the corresponding poset.

In [31], we describe how one may interpret this way the most of diagrams
from the Rhetorical Structure Theory (RST) conceived in the 1980s the by
W.C. Mann and S. A. Thompson [22]. Since then, RST has seen a great
development, especially in the computational linguistics, where it is often
used for the automatic generation of coherent texts, as well as for the automatic
analysis of the structure of texts. The RST aims to describe an arbitrary coherent
text, which is not the random sequence of sentences. The textual coherence
demands that for every part of a coherent text there exists a reason for its
presence, which is obvious to a competent reader. It seems that RST notion of
a coherent text is similar to our notion of an admissible text. In [31], we show
that the RST analysis of contextual dependencies between sentences of certain
small textual fragments represented as RST diagram may be redrawn as the
Hasse diagram for the partial order structure of the corresponding specialization
relationship. But the RST diagram may be drawn only for certain small textual
fragments such that their sentences are nucleus and satellite in the sense of the
RST. On the other hand, it is not the case when such a fragment is a part of a
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larger text. Then, according to the RST, there will be no link between a sentence
x belonging to such a fragment and any other sentence y that is far enough in
the text, because rhetorical relations can only bind adjacent segments. While
in our approach, such a link is possible in the specialization relation (of deep
order). This link is seen on the corresponding Hasse diagram as a direct edge
(x,y) or as a sequence of edges that link these two sentences x and y. Thus,
our approach is more general than this one of the RST.

3.4. Phonocentric topology at the level of sentence

In order to define a phonocentric topology at the semantic level of sentence, we
must distinguish there the meaningful fragments that are similar to meaningful
fragments at the level of text. Let x, y be any two word-tokens such that
x = y in the specialization order at the level of sentence that is similar to
the specialization order coming from the ‘logical relations among the different
chapters’ in a text. This relation x =< y means that the word-token = should
necessary be an element of the set of word-tokens U, required to understand
the meaning of the word-token y in the interpreted sentence. So we have z < y
in the order of writing and there should be some syntactic dependence between
them. It means that a grammar in which the notion of dependence between
pairs of words plays an essential role will be closer to our topological theory
than a grammar of Chomsky’s type.

There are many formal grammars focused on links between words. The
history of this stream of ideas is described by S. Kahane in a detailed review [|16].
We think that the theoretical approach of the special link grammar of D. Sleator
and D. Temperley is most appropriate to define a phonocentric topology at the
level of sentence, because in whose formalism “[t]he grammar is distributed
among the words” [40| p. 3], and “the links are not allowed to form cycles” [40,
p. 13] comparing with dependency grammars that draw syntactic structure of
sentence as a planar tree with one distinguished root word.

For a given sentence s, the link grammar assigns to it a syntactic structure
(called linkage diagram) that consists of a set of labeled links connecting pairs
of words. We use these diagrams to define all phonocentric topologies on this
sentence S.

Example. To explain how to define phonocentric topologies on a particular
sentence, let us borrow from [42] the following example of an ambiguous
sentence:
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(1) John saw the girl with a telescope.

We had yet considered this sentence in [29] by using Chomsky’s generative
grammar, and also in [31] by using link grammar. The analysis of this sentence
by means of the Link Parser 4.0 of D. Temperley, D. Sleator, and J. Lafferty [41]]
gives two linkage diagrams shown in the Fig.[2]

MVp

rSs O;a %;Ds

John saw the girl with a telescope

r*( Oﬂ”fﬁh }ﬂ

John saw the girl with a telescope

Figure 2: Two linkage diagrams with connector names.

These two diagrams rewritten with arrows that indicate the direction in which
the connectors match (instead of connector name) have the appearance shown

in the Fig.[3]
e

John saw the girl with a telescope

B

John saw the girl with a telescope

Figure 3: Two linkage diagrams with arrows instead of connector names.

It is clear that the transitive closure x < y of this relation < between
pairs of words defines two partial order structures on the sentence (1). By
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applying the functor L defined in Sect. we can endow the sentence (1)
with a phonocentric topology in two different ways. The Hasse diagrams of
corresponding posets are shown in the Fig. [4]

John John
the saw saw the
N |
girl with a girl
S .\
telescope with a
telescope

Figure 4: Two Hasse diagrams of the sentence (1) as displayed in [29,31].

To understand the sentence (1), the reader has to do the ambiguity resolution
when arriving to the word-token x =“with” by choosing only one of two
possible basis sets:

U, = {(1,John), (2, saw), (5, with) };
U, = {(1,John), (2, saw), (3, the), (4, girl), (5, with) }.

In the general case, the step by step choice of an appropriate context U, =
{z: z Xz} for each word z results in endowing the interpreted sentence with
a particular phonocentric topology among many possible.

In [31], we have shown how to define a phonocentric topology at the level
of word considered as a sequence of morphemes.

We summarize the results of our analysis presented in Sect. 3 as the following:

Slogan (Phonocentric Topologies as Syntax). Once the phonocentric topol-
ogy and the corresponding specialization order are determined at a given se-
mantic level, the systematic interpretation of linguistic phenomena in terms
of topology and specialization order, and their mathematical study is a formal
syntax at this level.
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4. Linguistic universals of a topological nature

Throughout the history of scientific study of human languages, researchers are
interested in discovering linguistic universals, that is, particular traits common
to all languages. Because it is impossible to recognize everything about all
languages, it is necessary to first decide where and how to look for linguistic
universals. It appears that our sheaf-theoretic approach makes here a small
contribution.

By its very origin, a human language is used for linguistic communication;
for that reason, written texts and uttered discourses should be considered as
communicative units. We must therefore look for linguistic universals, not only
in terms of word as it is done by J. H. Greenberg [11]] and his successors, but
especially in terms of text. A true linguistic universals at the level of text (or
discourse) must have a corresponding counterpart at the level of sentence.

By linguistic universals, we understand the characteristic properties of texts
those are admissible as messages having communicative purposes, regardless
of the language in which they are written. The question is, therefore, reduced
to this: What criteria should we accept to be sure that a particular characteristic
is truly shared by all admissible texts in any natural language? One can adopt a
statistical criterion ensuring, to a certain extent, that if some property is shared
by hundreds of natural languages, it is likely that it is shared by all. Such an
approach is taken up in the classical works of J. H. Greenberg. But there are
no guarantees that a particular trait of the languages already studied is also
shared by the language of a lost Indian tribe that escaped the statistical body of
research.

To our deep conviction, the way to avoid counter-examples is to adopt a
criterion based not only on statistical considerations, but mainly on the analysis
of the communicative function of languages. In our talk [30] at the 39th Annual
Meeting of SLE, we argued that the properties of a phonocentric topology
to satisfy the separation axiom 7y of Kolmogorov and to be connected are
linguistic universals. These properties should be required of the underlying
phonocentric topology on any text written for the purpose to be understood in
the linguistic communication.

A correct translation of an admissible text from one language into another is
done by successive translation of each sentence in a manner to conserve their
contextual relations. It results in a bijection between the original text and its
translation, and also in a homeomorphism between corresponding topological
spaces.
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It is clear that a phonocentric topology on an admissible text written in
one language (as well as the corresponding Hasse diagram) is invariant under
translation into another language. Hence, a phonocentric topology on a text X
and its properties and geometric invariants (say 7p-separability, connectedness,
homology groups, etc.) are stable under translation from one language into
another (i.e., under homeomorphism), and so they are formal invariants of the
text X.

The properties those are shared by all texts in all natural languages are
absolute linguistic universals. In [30-32], we argue that the Tg-separability, the
connectedness of a phonocentric topology, and the acyclicity of corresponding
Hasse diagram are features shared by the majority of languages.

4.1. Kolmogorov’s axiom 7 as a linguistic universal

One important example of a topological linguistic universal seems to be the
separation axiom Ty of Kolmogorov. In the Sect. 3, we argued for the relevance
of the separation axiom 7j to all semantic levels of an admissible text on the
base of a lucid formulation by F. Rastier [36]. Anyway, there is an essential
difference between the hermeneutic regime of formal languages and that one of
natural languages; it is important for us that texts written in a natural language
“never know the suspense of interpretation” [36, p. 166]. It’s still the same
idea that Origen expresses in the biblical hermeneutics regarding the non-
understanding. According to Origen, yet for an imbulatum, there is a meaning
as a sign of divine presence in the text.

Such an empirical truth that everyone knows from his/her own experience
of reader still deserves a more nuanced discussion. Firstly, this property of
understanding of texts in natural language is obviously taken into account by
everyone who writes a text intended for human understanding, whether he/she
is a professional writer or not; the rule is accepted as that one of a ‘writing
game’, so to speak.

If we do not want to be misunderstood, we do not propose the reader to
suspend understanding until the end of writing because we know that the
words already read trigger intellectual interpretation mechanisms based on
indissoluble links between signifier and signified. This is well expressed by the
colourful Russian saying: A word is not a sparrow; you can’t catch it when it
flies away! In order to be understood, we must organize our writing in such a
way that the reader’s understanding would always be based on the part of text
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already read, in total ignorance of its future development.

The second reading (as all subsequent readings) is governed by the same rule,
despite the fact that we already know the whole text. The repetitive reading
respects the unpredictability of the future; while reading at the time being, we
are being in the ‘here and now’, that leads us to identify the physical real time
with the time of the narrative. What lies in the pages that follow makes no
context for the understanding of what has been read. In particular, this rule is
just applicable to scientific texts.

A question arises: What is the reason for this indisputable empirical phe-
nomenon? It seems to us that it is the primacy of speech over writing, which
causes the subordination of graphic expressions to phonetic ones.

Preliterate civilizations existed thousands of years before the advent of writ-
ing and even still exist somewhere else. Even today there are thousands of
people who cannot read. The cultural history of the human species is repeated
in the personal history of each individual because we learn to speak before we
learn to read and write. But as a physical phenomenon, a phonetic expression
exists in the dimension of time, and here the physiological properties of our
speech organs are just involved.

In a conversation, the interlocutors have access only to whatever is already
said, because the future remains unpredictable. Once said, the spoken word is
flying away and the only chance to get by in such a situation is to understand
on the spot all that is said by the others.

For anybody speaking, this attitude quickly becomes a habit and even a
conditioned reflex on the situation of linguistic communication. As functional
and even physiological in origin, this property of the oral communication is
inherited by the written communication. So it becomes a linguistic universal
because it is specific to understanding in linguistic communication, regardless
of the natural language concerned. In our formalism, this linguistic universal is
expressed by the statement that the topological space underlying any semantic
level of an admissible text satisfies the separation axiom 7 of Kolmogorov.

4.2. Topological connectedness as a linguistic universal

In Sect. 3, we have considered some examples of phonocentric topologies
at various levels of semantic description of an admissible text. In all these
examples, we see that their underlying topological spaces are connected. This
shows empirically an important topological property of all genuine natural
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language texts, namely the connectedness, in the mathematical sense, of their
phonocentric topology. The reasons for it aren’t accidental, but it reveals a
very important topological property of genuine natural language texts. At the
conference [30], we presented arguments that the topological connectedness is
one of the linguistic universals.

Any literary work has a property to be the communicative unity of meaning.
So, for any two novels X and Y yet of the same kind, say historical, detective
or biographical, their concatenation Z under one and the same cover doesn’t
constitute a new one. What does it mean, topologically speaking? We see
that for any z € X there exists an open neighbourhood U of z that doesn’t
meet Y, and for any y € Y there exists an open neighbourhood V' of y that
doesn’t meet X. Therefore, Z = X | |Y (i.e., Z is a disjoint union of two
non-empty open subsets X and Y); hence, Z isn’t connected. Thus, a property
of a literary work to be the communicative unity of meaning may be expressed
as a connectedness of a topological space related to text.

Recall that a space X is said to be connected if it is not the disjoint union of
two non-empty open subsets. It is the same to say that X and & are the only
subsets opened and closed at atime. Such a property is called the connectedness
of the space X. In any topological space X, a connected set is a subset U of
X that is a connected space for the induced topology. It is clear that the union
of connected parts having one point in common is also a connected part.

Define on a topological space X the relation ~ by setting = ~ y if and only
if z and y belong to a connected subset of X. It is immediate that this relation
is an equivalence; the equivalence class containing a point x is a connected
part that is called connected component of x. It is clear that a topological space
X is the disjoint union of its connected components, and any connected part is
contained in exactly one component. If f: X — Y is a continuous mapping of
topological spaces where the space X is connected, then f(X) is a connected
subset of Y.

Let X be an Alexandrov topological space. It is clear that for all z € X, the
smallest open U, is connected. So, each open set U, of the basis B(X) of a
phonocentric topology is connected.

For all z,y € X such that z # y, the subspace {z,y} is connected if and
only if z € Uy or y € Up; in terms of the specialization order, this amounts
to saying that x =< y or y =< x. The following well-known proposition (see,
e.g., [23, p. 8]) characterizes connected Alexandrov topological spaces:
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Proposition 3. Let X be a connected Alexandrov topological space. Then for
every pair of points x, y of X, there exists a finite sequence (z1,...,zs) of
points in X such that z; = x, zs = y and each {z;, zi+1} is connected (i.e.,
Zi R ziprorz; = ziv1) foralli=1,...,s — 1.

Indeed, let Z be a set of points accessible by a finite sequence (21, . .., z5) of
points in X starting from = = z1, such that each set {z;, z;+1 } is connected for
1=1,...,5s—1. Foreachz € Z,wehave U, C Z because any elementy € U,
is itself also accessible by a chain (z1,...,2,y). Wehave Z C |, , U. C Z;
hence Z is open. For each z € Z, we have also cl({z}) C Z because, for all
y € cl({z}), any neighbourhood of y, including Uy, contains z. This implies
z2yandy € Z. Wehave Z C |J,.,cl({z}) € Z; therefore Z is closed
because X is an Alexandrov space. Now, the set Z is non-empty because
x € Z, opened and closed subset of the connected space X. Hence, Z = X.

It should be noticed that the formulation and the proof of the Proposition 3]
are valid regardless of the (finite or infinite) number of points in the space X.

Since the relation x < y is transitive, we can, in the assertion of Proposition 3,
exclude unnecessary elements of the finite sequence (z1,...,2s). Namely,
after excluding repetitive elements, we can reduce each subsequence z; <
Zi+1 < Zi+2 to z; < z;4o if any exists, and we can reduce each subsequence
Zj = zj41 = zj42 to subsequence z; = zj 9 if any exists.

After a finite number of such steps of reduction, we have a sequence
(21,...,2r), such that in this sequence, the relations < and > follow one
after the other, namely:

if z; < 2z;41,then z;_1 > z; < 2z;41 forall ¢ such that 1 < i < s;
if z; > zj41,then z;_1 < z; > 2;41 forall ¢ such that 1 <7 < s.
Example. In the Hasse diagram of the book [21], one immediately sees such

a sequence (4 = 2 < 7 = 6 < 8), which connects the Chapter 4 with the
Chapter 8, that is shown in the Fig.[5

VAVAN

Figure 5: A Khalimsky arc traced in the Leitfaden of [21] shown in the Fig. 1.

The Hasse diagram of the type shown in the Fig. 5 is called Khalimsky arc.
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We define now the Khalimsky topology by means of a structure that differs
slightly from the original definition of [[17]. Let us first define the partition
R = U,nez P of Euclidean line of real numbers R by setting:

P,, = [m— %, m+ 1], closed interval of real numbers {t: m — 3 < z <
m + %}, for each even integer m € Z;

P,, =]m — 3, m + %[, open interval of real numbers {t: m — 3 < z <
m + %}, for each odd integer m € Z.

Recall the notion of a quotient topology. Let X be a topological space, and
let P be an equivalence relation on X. The quotient topology on the quotient
set X/p is the finest topology making continuous the canonical projection
X — X/p that associates to each element of X its equivalence class. That is,
the set of equivalence classes of X/p is open in the quotient topology if and
only if its inverse image is open in X.

Let P be an equivalence relation on R associated with the partition R =
Upwez Pm- We then define a quotient topology on X/p. By identifying
P,, € X/p with m € Z, we define the Khalimsky topology on Z. The set of
integers Z endowed with the Khalimsky topology is called the Khalimsky line.
Since R is connected, the Khalimsky line is connected as well.

It is immediate that an even point is closed, and that an odd point is open.
Concerning the smallest neighbourhoods, we have Uy, = {m} if m is odd, and
we have U,,, = {m — 1, m,m+ 1} if m is even. For integers m < n, we define
a Khalimsky interval to be the interval [m, n] N Z with the topology induced
from Khalimsky line, and we denote it by [m, n]z. We call a Khalimsky arc any
topological space that is homeomorphic to a Khalimsky interval [m, n]z. We
say that the points that are images of m and n are connected by a Khalimsky
arc. Now it is clear that the Proposition 3 is equivalent to the following:

Proposition 4. An Alexandrov topological space X is connected if and only if
for every pair of points x,y of X, there exists a Khalimsky arc that connects
them.

In other words, for an Alexandrov space, the connectedness and the connect-
edness by a Khalimsky arc are equal.

It is obvious that all topological spaces whose Hasse diagrams are shown in
the Fig. 1 are connected. It is difficult to imagine a book in which there is a
single chapter that has no contextual links to other chapters. The same holds
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not only at the semantic level where primitive elements are chapters, but also
at the semantic level where primitive elements are sentences of the text (such a
level is called the semantic level of text). If at the end of the reading, we realize
that a sentence z has nothing to do with the reminder of the text, we have a
feeling that ‘a noise crept into the message’ because the reading of the text is
finished, but the sentence = remains to be its completely strange ingredient.

On the contrary, if during the reading we meet a sentence that does not have
direct contextual links with the sentences already read (like the item 7 in the
Hasse diagram of the textbook [39] as shown in the Fig. 1), we have a feeling
to be on a turning point in the narrative, and that the author prepares the reader
for the future development, where the suspended sentence will be necessary for
the understanding. For an admissible text, these considerations confirm that the
connectedness of the underlying topological space expresses mathematically
the necessary requirement of a textuality in the sense one understands this
concept in the semiotics of text.

This explains why a basic unit that is pertinent as a message in the situation
of linguistic communication should be an admissible text (or discourse) whose
underlying topological space is connected! It is a connected unit because, after
having communicated such a message, the transmitter (author, sender) may
become silent to give the floor to its receptor (reader, receiver).

At the level of text, the connectedness of message is also a requirement
specific to the kind of linguistic communication qualified as a dialogue, that
is, to a bi-directional communication with others. If somebody produces, as
a message, a series of phrases that disintegrates into pieces that have no links
between, it reveals the disregard for the interlocutor, or the absence of the
desire to communicate, or the use of a language for purely expressive purposes
without a desire to communicate.

It is the same at the semantic level of sentence with regard to connectedness,
although the formal definition of a phonocentric topology at the level of sentence
needs more delicate work.

Remark. 1t should be noticed that for an admissible text, the corresponding
Hasse diagram with directed edges is acyclic at any semantic level. It is clear
that this property of a phonocentric topology is stable under homeomorphism.
This means that the acyclicity of the Hasse diagram corresponding to the
phonocentric topology is yet another linguistic universal of a topological nature.
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5. Sheaves of meanings appeared as semantics

Let X be an admissible text endowed with a phonocentric topology, and let %
be an adopted sense of reading. In a Platonic manner, for each non-empty open
(that is meaningful) part U C X, we collect in the set .% (U) all fragmentary
meanings of this part U read in the sense .%; also we define .% (@) to be a
singleton pt. Thus, we are given a map

U F(U) (1)

defined on the set O(X) of all open sets in a phonocentric topology on X.
Following the precept of hermeneutic circle ‘to understand a part in ac-
cordance with the understanding of the whole’, for each inclusion U C V'
of non-empty opens, the adopted sense of reading .# gives rise to restriction
map resy, iy : (V) — Z(U). We will consider the inclusion of sets U C V/

as being the canonical injection map U Cﬂ> V' . Thus, we are also given a
map
(UL Vs { F7(V) 2 2 (U) ) )
with the properties:
(i) idy — id #(y for all opens V" of X;
(ii) resy,y oresy,y = resy,y for all nested opens U C V' C W of X.

The first property means that the restriction resy, ;7 respects identity inclusions.
The second property means that two consecutive restrictions may be done by
one step.

As for the empty part @ of X, the restriction maps resg, & and resy, i with
the same properties are obviously defined.

Let (X, O(X)) be a topological space. We can consider its topology O(X)
as the category Openy whose objects are open sets of X, and where for
two open sets U,V € O(X), the class of morphisms Mor(U, V') is empty if

U ¢ V,and Mor (U, V) is the set reduced to the canonical injection U Ay
if U C V. The composition of morphisms is defined as the composition of
canonical injections.

From the mathematical point of view, the assignments (I]) and (2) give rise
to a presheaf .# defined as a contravariant functor from the category Openy
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to the category Set of sets and maps
7 : Openy — Set, 3)

acting on objects as defined by (1), and acting on morphisms as defined by (2).
In sheaf theory, an element s € .# (V) is called section (over V'); sections
over the whole space X are said to be global.
We consider the reading process of an open fragment U as its covering by
some family of open subfragments (U;) je s already read, thatis U = (J,¢ ; U;.
Following Quine, “There is no entity without identity” [35]. We argue
that two fragmentary meanings should be equal globally if and only if they are
equal locally. It motivates the following identity criterion:

Claim S (Separability). Let X be an admissible text, and let U be an open
fragment of X. Suppose that s,t € % (U) are two fragmentary meanings of U
and there is an open covering U = ;¢ ; U; such that resy, u,(s) = resy, v, (t)
for all fragments U;. Then s = t.

According to the precept of hermeneutic circle, ‘to understand the whole
by means of understandings of its parts’, a presheaf .# of fragmentary
meanings satisfies the following:

Claim C (Compositionality). Let X be an admissible text, and let U be an
open fragment of X. Suppose that U = | J ieg Uj is an open covering of U;
suppose we are given a family (s;)jcj of fragmentary meanings, s; € % (Uj)
for all fragments Uj, such that resy,, u,nu, (si) = resu;, u;,nu, (s;). Then there
exists some meaning s of the whole fragment U such that resy, u, (s) = sj for
all fragments Uj.

Thus, any presheaf of fragmentary meanings defined as above should satisfy
both Claims S and C, and so it is a sheaf by the very definition. This motivates
the following definition:

Frege’s Generalized Compositionality Principle. A presheaf of fragmentary
meanings naturally attached to any sense (mode of reading) of an admissible
text is really a sheaf; its sections over a meaningful fragment of the text are
its fragmentary meanings; its global sections are the meanings of the text as a
whole.

Traditionally attributed to Frege, the compositionality principle arises in
logic, linguistics and philosophy of language in many different formulations,
which all however convey the concept of functionality.
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We note that the Claim S guarantees the meaning s (whose existence is stated
by the Claim C) to be unique as such. It is not so hard to see that these two
conditions C and S needed for a presheaf to be a sheaf are analogous to those
two conditions 1° and 2° needed for a binary relation to be a function.

5.1. Sheaf-theoretic conception of a functional dependence

Formally, for a function f of n variables, it is set that: 1° for any family
of variables’ values (s1,. .., Sp), there exists a function’s value f(s1,...,sy)
being dependent on them, and 2° this function’s value is unique. Likewise, for
a sheaf %, it is set that: (due to C) for any family of sections (s;);cs those are
locally compatible on an open U, there exists a section s being their composition
dependent on them, and (due to S) this composition s is unique as such. In
this generalized (sheaf-theoretic) conception of a functional dependence, the
variables and their number are not fixed in advance (we consider an arbitrary
family of pairwise compatible sections as variables), but for any such a family
of variables, there exists the glued section considered as their composition
(analogous to the function’s value in a given family of variables) and such a
section is unigue. So the true formulation of Frege’s compositionality principle
does not demand a set-theoretic functionality, but demands its sheaf-theoretic
generalization stating that any presheaf of fragmentary meanings naturally
attached to an admissible text ought de facto to be a sheaf. The sheaves arise
whenever some consistent local data glues into a global one.

5.2. Schleiermacher category of sheaves of fragmentary meanings

The reader should become at home with the senses treated as functors although
we call them sometimes as ‘modes of readings’ instead of ‘senses’ not only to
emphasize the character of intentionality of each actual process of reading but
rather to avoid a possible confusion that may be caused by another technical
acceptance of the term ‘sense’. So one can think, for example, about the
historical sense . and the moral sense ¢ of some biographical text.

Let us consider now any two senses (modes of reading) .#, ¢ of a given text
X,andletU C V betwo arbitrary meaningful fragments of the text X. It seems
to be very natural to consider that any meaning s of fragment V' understood
in the historical sense .% gives a certain well-defined meaning ¢(V')(s) of the
same fragment V' understood in the moral sense 4. Hence, for each V' C X,
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we are given amap ¢(V): .Z# (V) — 4(V). To transfer from the meaning s of
V in the historical sense to its meaning ¢(V")(s) in the moral sense and then to
restrict the latter to a subfragment U C V is the same operation as to make first
the restriction from V' to U of the meaning s in the historical sense, and to make
then a change of the historical sense to the moral one. This kind of transfer
from the understanding in one sense .# to the understanding in another sense
¢ is a usual matter of linguistic communication. In the Christian theology, the
possibility of such a transfer from one of four senses of any biblical verse to
some another its sense is considered as the cornerstone method of exegesis.

Formally, this idea is well expressed by the notion of morphism of
the corresponding sheaves ¢: % — F' defined as a family of maps
o(V): Z(V) — Z'(V) those commute with restrictions for all opens U C V,
that is, resy, ;; 0 (V') = ¢(U) oresy, ;7. This can be expressed in a simple way
by saying that the following diagram

commutes for all opens U C V of X.

This notion of morphism is very near to that of incorporeal transformation
of G. Deleuze and F. Guattari illustrated by several examples, one of which we
quote:

In an airplane hijacking, the threat of a hijacker brandishing a revolver is
obviously an action; so is the execution of the hostages, if it occurs. But the
transformation of the passengers into hostages, and of the plane-body into a
prison-body, is an instantaneous incorporeal transformation, a “mass media
act” in the sense in which the English speak of “speech acts.” [S} p. 102]

To adapt this example, we need only to transform it into some written story
about a hijacking. Hence, the family of maps (¢(V'))ycp(x) defines a change
of mode of reading of a given text X, or simply a morphism ¢: .# — ¥. It
is obvious that a family of identical maps id #(): F (V) — F (V) given for
each open V' C X defines the identical morphism of the sheaf .7 that will
be denoted as id#. The composition of morphisms is defined in an obvious
manner: For two arbitrary morphisms ¢: % +— 4, ¢: 4 — 7, we define
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(o )(V) = (V) op(V). Itis clear that this composition is associative
every time it may be defined.

Thus, given an admissible text X, the data of all sheaves .% of fragmentary
meanings together with all its morphisms constitutes some category in a strict
mathematical sense of the term. We name this category of particular sheaves
describing the exegesis of the text X as category of Schleiermacher and denote
it as Schl(X) because he is generally considered to be the author of the
cornerstone principle of a natural language text understanding, called later
by Dilthey as the hermeneutic circle. The parts are understood in terms of
the whole, and the whole is understood in terms of the parts. This part-
whole structure in the understanding, he claimed, is principal in the matter of
interpretation of any text in natural language.

The theoretical principle of hermeneutic circle is a precursor to Frege’s prin-
ciples of compositionality and contextuality formulated later. The succeeded
development of hermeneutics has confirmed the importance of Schleierma-
cher’s concept of circularity in text understanding. From our point of view,
the concept of part-whole structure expressed by Schleiermacher in 1829 as
the hermeneutic circle principle reveals, in the linguistic form, the fundamental
mathematical concept of a sheaf formulated by Leray in 1945, more than a
hundred years later. This justifies us to name the particular category of sheaves
Schl(X) after Schleiermacher.

5.3. Building a sheaf of fragmentary meanings from local data

An admissible text X is endowed with a phonocentric topology in such a
way that the set O(X) of all open sets of this topology is made up of all
meaningful parts of X. The Hasse diagram presents a perfect visualization of
this topological structure but its construction requires a lot of analytical work.
It seems that the author has such a representation about his/her proper text, as
well as the structure of text may be rebuild after philological considerations.
But for a reader, how this topological structure is obtained during the reading?
Obviously, the understanding is manifested in the reader’s conscience as an
empirical fact of having grasped the meaning of a sentence read in the present
moment. Thus, the meaningful parts that are most clearly manifested during
the reading process are the opens U,, of the phonocentric topology basis B (X)
that is defined in the Sect. 3. These meaningful parts U, provide the set of
contexts for the understanding of the whole text.
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The Proposition 1 states that the set of all these fragments U, constitutes
the minimal basis for a phonocentric topology. Formally, this means that any
arbitrary open set is the union of a family of these basis sets U,. The liberty in
choice of basis sets whose union gives an open set U C X makes us doubtful
whether it would be too strong to impose the satisfaction of Claims S and C for
all opens of the topology (X ). Would it be more convenient and more useful
to develop the very theory in more concrete terms, say even in constructive
terms of opens U, of the minimal basis B (X) of a phonocentric topology on
X? The answer is plain and simple: From the psychological point of view,
yes, perhaps; but from the mathematical point of view, this approach will be
formally equivalent but less technically convenient! Moreover, a general truth is
sometimes more understandable that a mass of concrete data. In what follows,
we will present formal arguments to justify this point of view.

A topological space (X, O(X)) may be considered as the category Open y

with open sets U € O(X) as objects, and injection maps U ™V as mor-
phisms.

Let ®B(X) be a basis for the topology O (X) of X. Itis obvious that the basis
B(X) gives rise to a category defined in the same way that we consider the
topology (X)) as being the category Open y. By a slight abuse of notations,
we will also denote such a category as 8 (X). In the same manner as above, we
define a presheaf .% of sets on the topology basis B as a contravariant functor
on the category *B with values in the category of sets Set.

Namely, for every basis open U € B(X), the presheaf .7 attaches a set
Z (U), and so we are given a map

U Z(U) )

defined on the basis B(X) for a topology on X. Also, for every pair of
opens U,V € B(X) such that U C V, the presheaf .%# attaches a map
resy,y: # (V) — % (U), and so we are given a map

{UCV}={resyp: F(V)— Z(U)} ®)
with the properties of identity preserving and transitivity:
(i) idy + id z(y for all opens V' € B(X);

(ii) resy,y oresy,y = resy,y for all nested basis opens U C V C W of
B(X).
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Given a basis B(.X) for a topology on X, the data of (F (V),resv, v )v,uen(x)
satisfying these properties is called presheaf of sets over the basis B(X) for
the topology on X. In the case of an admissible text X, the topological basis
B(X) consists of all fragments of the kind U,, that may be considered as
empirical data.

Let .# be a presheaf of sets over a basis B(X) for the topology O(X) on
X. This presheaf .% is said to be a sheaf over the topological basis B(X) if
the following Claims Sb and Cb are satisfied:

Claim Sb. Let U be any open of the basis 8(X) for the topology on X,
and let s,t € F(U) be two elements of U. If there exists an open covering
U =U,cs Uj by basis open sets U; € B(X) such that for each U; of this
covering, we have resy, y, (s) = resy,u, (t). Then s = t.

Claim Cb. Ler U be any open of the basis *B(X) for the topology on X,
and let U = UjeJ Uj be a covering of U by basis open sets U; € B(X).
Suppose we are given a family (sj)jc; of elements s; € % (U;) such that
resy,, v;nv; (8i) = resy, v;nv, (s;). Then there exists an element s € F (U)
such that resy, y; (s) = s; for each open U.

It is obvious that the Claims Sb and Cb are similar to the Claims S and C in
the definition of a sheaf over a topological space.

Let .7 be a presheaf of sets over the basis (X)) for a topological space X.
For any open U € O(X), the sets (Z (V'))p>5ycu together with maps resyy, v
(where W € B(X), V € B(X) such that V. C W C U) form a projective
system. We can associate with .% a presheaf of sets .%#’ over X in the ordinary
sense by assigning to any open U € O(X), the projective limit

F0) = lim F(V), ©)
BoVCU

where V' are running the set (ordered by C) of all opens V' € 9B(X) such that
VCU.

In the EGA of A. Grothendieck and J. A. Dieudonné [13] p. 75], there is a
general proposition that, for a presheaf with values in the category of sets, is
interpreted as the following result.

Proposition 5. For the presheaf F' defined over topology O(X) by (6)) to be
a sheaf, that is, to verify the Claims S and C, it is necessary and sufficient that
the presheaf .7 defined over the basis B(X) for O(X) verifies the Claims Sb
and Cb.
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Let .#, ¢ be two presheaves of fragmentary meanings defined over the topo-
logical basis B(X ). We define a morphism 0: .# — ¢ asa family (6(V))yesn
of maps (V) : .Z (V) — ¢ (V) satisfying the conditions of compatibility with
the corresponding restriction morphisms. With the notation of Proposition [3]
we deduce a morphism 6': .Z’ — &’ of presheaves of fragmentary meanings
defined on all opens U € O(X) by taking ¢’ (U) to be the projective limit of
O(V)forVeB(X)andV CU € O(X).

Let .# be a sheaf of fragmentary meanings over O(X), and let %7 be a
sheaf over B(X) defined by the restriction of .# to B(X). Then, the sheaf
Z1' over Open y that we obtained from .%#; according to the Proposition 5
is canonically isomorphic to .%, because of the claims S and C, and by the
uniqueness of the projective limit. Usually, we identify .# and %’

For two sheaves .7, ¢ defined over O(X) and a morphism 6: .% — ¥,
one can show that the data of (V): .# (V) — ¥4(V) given only for V €
B(X) determines completely the morphism 6. For more details, see EGA of
A. Grothendieck and J. A. Dieudonné [13, p. 76].

Theoretically speaking, this means that we have a good reason to move the
considerations from the level of empirical data, where a phonocentric topology
is revealed by the minimal basis (U, ),ex, to the general level, more abstract
but more simple, where a phonocentric topology is defined by the set O(X)
of all opens according to the classical Hausdorff axioms (t;), (t2), and (t3)
of a topological space. In mathematics, the axiomatic view on a topology is
particularly useful in all sorts of reasonings where topological structures are
concerned. Once we have defined a topological space in terms of its basis, we
may continue the reasoning in terms of all open sets of this topology.

5.4. Compositionality of locally defined modes of reading

Note that the class of objects in the category Schl(X) is not limited to a modest
list of sheaves corresponding to literal, allegoric, moral, psychoanalytical
and other senses mentioned above. In the process of text interpretation, the
reader’s semantic intentionality changes from time to time, with the result that
there is some compositionality (or gluing) of these locally defined sheaves
of fragmentary meanings, which we consider in details in [31]. There is a
standard way to name the result of such a gluing as, for example, this is the
case of Freudo-Marxist sense.

As the reader’s intentionality to interpret an arbitrary text in a certain sense
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#, this particular sense .# yet precedes a reading; for example, one may
intend to read a story in a moral sense. But for a given text X, the intentional
object ‘sense .7 is represented by the sheaf of sets (7 (V'), resv,v)v,veo(x)
of fragmentary meanings.

To analyze the compositionality of senses (or modes of reading) in our sheaf-
theoretic formalism, we recall firstly the notion of induced sheaf. Let X be
a topological space, let U be an open set of X, and let i: U— X be the
canonical injection of the open U in X. Then, for any sheaf .7 of sets over X,
one can define a sheaf of sets over U, which is called sheaf induced by .F on
U, and which is denoted as .Z# |y, by setting:

(ZF|u)(V)=Z((V)) foranyopenV C Us;
(res|y)w, v = res;w),iv) forallopens V,W C U such that V C W.

For any morphism 0: .% — ¢ of sheaves of sets over X, we note by 6| the
morphism .# |y — ¢|y; consisting of maps 0(i(V')) for opens V C U.

We have a reason to assume that the reading of the whole text X in a sense .#
is represented by an open covering (Uy )¢, of the text X, where each fragment
U, is read in a sense .%), that is defined as .#) = Z |y, .

The obvious concordance of these senses .#) means that for all pairs of open
fragments Uy, U, C X, we have an isomorphism

Ot Zulwanv,) = Palwanu,)- (7

In other words, in the interpretation of the common part Uy N U, we can
change the sense .7 to the sense .7, and vice versa.

It is useful to denote Uy, = Uy NU, and Uy, = Uy NU, N U,. Then, in
this notation, the family of isomorphisms

Oni: Fulv, = Falu, )
satisfies the condition:
(forall Uyx,U,,U,) 0xy 00, =0y, onUyu. 9)

In the theory of sheaves, there is a theorem stating that a family of isomor-
phisms satisfying the condition (9) allows us to rebuild the sheaf .7 uniquely.
The following proposition is a linguistic version of this general mathematical
result:
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Proposition 6. Let (Uy)\cr be an open covering of the text X, where each
fragment U, is read in a sense .. Let for each pair of fragments Uy, U,
of (Ux)xer be given an isomorphism 0y, ﬁM‘UAu = gA‘UM of sheaves
over Uy,. Assume these isomorphisms are satisfying the condition that for all
Ux, U, U, of the covering:

Oxnp 0 0 = 0y, on Uy (10)

Then, there exists a sheaf F over X, and for each Uy, of the covering (Ux)aer
there exists an isomorphism 0y: F |y, — F» such that Ou = Bux 0 Oy for
Ux, U, of the covering (Ux)xer. Moreover, (F,(0x)xcL) is unique up to
unique isomorphism.

For the proof, see EGA of A. Grothendieck and J. A. Dieudonné [13, p. 77].

The family of isomorphisms (6,,,) satisfying the gluing condition (10) is
called a 1-cocycle. One says that the sheaf .% is obtained by gluing of sheaves
(#a)rer by means of 6, and usually one identifies .7 and .7 |y, by means
of 6 A

For a finite family of sheaves (.%) ) \cr, and their isomorphisms ), satisfying
the condition of gluing (10), the sheaf .% is called to be their composition
obtained by the gluing of sheaves (.%)),cr, by means of the 6,,; this describes
how we define the compositionality of locally defined modes of reading (senses)
understood as sheaves of fragmentary meanings.

The gluing of sheaves is a compositionality method that enables us to obtain
a large number of globally defined sheaves from a small number of locally
defined ones. In fact, the sense .# as a global mode of reading (or an integral
intention during the interpretation of the whole text) is composed of all local
modes of reading taken during interpretations of parts.

Example. According to the biblical hermeneutics, the readings of the Scripture
in the literal, allegorical, moral, and anagogical senses are consistent over
each fragment of the type U,. Suppose that we have read the whole text of
the Scripture by fragments, where each fragment was read in one of these
four senses (literal, allegorical, moral, anagogical). These partial readings
satisfy the gluing condition (10) above. There exists therefore a sense .# of
reading of the whole text of the Scripture such that for each of its sentence,
there are a neighbourhood and one of these four senses (literal, allegorical,
moral, anagogical) that is consistent with the reading of this neighbourhood
in the sense .%#. The sense .# is a composition of these four senses (literal,
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allegorical, moral, anagogical), but globally it differs from each of these four
senses being applied to the whole text. Hence, for the text F of the Scripture,
the class of objects of the category of Schleiermacher Schl(F) contains not
only these four senses (literal, allegorical, moral, and anagogical) but much
more their compound senses, where each compound sense .7 is defined by
gluing a family of these four senses according to a particular covering of text
by fragments, such that each fragment is read in only one sense of these four.

We summarize the results of our analysis presented in Sect. 5 as the following:

Slogan (Sheaves of Fragmentary Meanings as Semantics). The mathemat-
ical study of a natural language texts interpretation in terms of the category
of sheaves of fragmentary meanings and their morphisms is a sheaf-theoretic
formal semantics.

6. Bundles of contextual meanings

So far, we have considered only the meanings of open sets in the phonocentric
topology at any semantic level. In this section, we describe how we have to
define the meanings of points in the phonocentric topology at a given semantic
level. It should be noticed that in general, not every singleton x is open in
Th-topology, and if this is the case, the meaning of such a point = has not yet
been defined.

In 1884, Frege wrote in the Die Grundlagen der Arithmetik [9, p. X]: “nach
der Bedeutung der Worter muss im Satzzusammenhange, nicht in ihrer Vere-
inzelung gefragt werden;” This declaration is traditionally named as Frege’s
principle of contextuality. Frege stated it eight years before he pointed out
his theoretic distinction between Sinn and Bedeutung; that is why the word
‘Bedeutung’ here is usually translated in English as ‘meaning’: “Never ask
for the meaning of a word in isolation, but only in the context of a sentence”.
As we have yet seen in the Sect. [3.4] the context of a whole sentence is the
greatest possible at the semantic level of sentence. We may also ask for the
meaning of a word x in the context of a clause to which it belongs, or in the
context of some lesser part of this clause as, e.g., of the smallest part U,.. This
restatement makes Frege’s definition more precise. If we try to recast such a
contextuality principle to the level of text, then we would have to say: ‘“Never
ask for the meaning of a sentence in isolation, but only in the context of
some meaningful fragment of a text”. Such a fragment may be chosen in
many ways to induce the same contextual meaning of the sentence.
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To formalize this definition, let us consider the phonocentric topology
at the level of text. Let a sentence x belongs to meaningful fragments
(opens) U and V. Then fragmentary meanings s € .#(U), t € #(V) are
said to induce the same contextual meaning of a sentence x € UNYV if
there exists some open neighbourhood W of z, such that W C U NV and
resy, w(s) = resy,w(t) € #(W). The identity of fragmentary meanings is
understood here accordingly to the criterion claimed by S.

This relation ‘fragmentary meanings s, t induce the same contextual meaning
of the sentence x’ is clearly an equivalence relation. The equivalence class so
defined by a fragmentary meaning s is called a germ at x of this s, and is denoted
by germ, (s). The equivalence class of fragmentary meanings agreeing in some
open neighbourhood of a sentence x is natural to define as a contextual meaning
of x. Let .#, be the set of all contextual meanings of z. Following S. Mac
Lane and 1. Moerdijk [20, pp. 83,84], this .#,, is nothing else but the inductive
limit %, = hﬂ(?(V),resV’ U)V,Ued(z), Where O(x) is the set of all open
neighbourhoods of x.

In the bundle-theoretic terms, we summarize the aforesaid as the following:

Frege’s Generalized Contextuality Principle. Let .% be an adopted sense of
reading of a fragment U of an admissible text X. For a sentence x € U C X,
its contextual meaning is defined as a germ,(s) at x© of some fragmentary
meaning s € .F(U). The set F, of all contextual meanings of a sentence
x € X is defined as the inductive limit %, = ligl(ﬁ(V),resv,U)V;Ueg(z),
where O(x) is the set of all open neighbourhoods of x, that is the set of all
meaningful fragments containing x.

Remark. Note that for an open singleton {z}, we may canonically identify
For the coproduct F' = ||y .%,, we define now a projection map

p: F' — X by setting p(germ,s) = x. Every fragmentary meaning s € .# (U)

determines a genuine function $: x — germ, s to be well-defined on U.

We define the topology on F' by taking as a basis for this topology all the
image sets $(U) C F'. For an open U C X, a continuous function t: U — F
such that t(x) € p~ () for all z € U is called a cross-section. The topology
defined on F' makes p and every cross-section of the kind of s to be continuous.

For a given topological space X, we have so defined a topological spaces F
and a continuous surjection p: F' — X. In topology, this data (F p) is called
a bundle over the base space X. A morphism of bundles from p: F' — X to
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q: G — X is a continuous map h: F' — G such that the diagram

commutes, that is, g o h = p.

Thus, we have defined a category of bundles over X. A bundle (£, p) over X
is called érale if p: F' — X is a local homeomorphism. It is immediately seen
that a bundle of contextual meanings (| |, x %z, p) constructed as above from
a given sheaf .# of fragmentary meanings is étale. Thus, for an admissible text
X, we have defined the category Context(X) of étale bundles (of contextual
meanings) over X as a framework for the generalized contextuality principle
at the level of text.

The similar definition may be formulated at each semantic level. The defi-
nition formulated at the level of sentence returns Frege’s classic contextuality
principle. Once a semantic level is given, the definition of a contextual meaning
for a point x of the corresponding topological space X is stated as germ,s,
where s is some fragmentary meaning defined on some neighbourhood U of z.

7. Frege duality

For a given admissible text X, we have defined two categories formalizing the
interpretation process, that is, the Schleiermacher category Schl(X) of sheaves
of fragmentary meanings and the category Context(X) of érale bundles of
contextual meanings. Our intention now is to relate them to each other.

We will firstly define a so-called germ-functor

A: Schl(X) — Context(X).

For each sheaf .7, it assigns an étale bundle A(.F) = (|| ¢ x F,p), Where
the projection p is defined as above. For a morphism of sheaves ¢: % — %/,
the induced map of fibers ¢,: %, — %, gives rise to a continuous map
A@): Upex Fo = Uyex F such that p’ o A(¢) = p; hence A(¢) defines a
morphism of bundles. Given another morphism of sheaves 1), one sees easily
that A(¢ o ¢) = A(¢)) o A(¢) and A(id#) = idp. Thus, we have constructed
a desired germ-functor A: Schl(X) — Context(X).
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We will now define a so-called section-functor
I': Context(X) — Schl(X).

We denote a bundle (F, p) over X simply by F'. For a bundle F', we denote the
set of all its cross-sections over U by I'(U, F'). If U C V are open sets, one has
arestriction map resy, 7 : I'(V, F') — I'(U, F’) that operates as s — s|¢7, Where
sly(z) = s(z) forall z € U. Itis clear that resy, y = idp(y, ) for any open U,
and that the transitivity resy,y o resy, v = resy, ¢y holds for all nested opens
U CV C W. So we have constructed obviously a sheaf (I'(V, F'), resy, ).

Then for any given morphism of bundles h: £ — F, we have a map
L'(h)(U): T(U,E) — T'(U,F) defined as I'(h)(U): s — h o s, which is
obviously a morphism of sheaves. Thus, we have constructed a desired section-
functor I': Context(X) — Schl(X).

The fundamental theorem of topology states that the section-functor I’
and the germ-functor A establish a dual adjunction between the category of
presheaves and the category of bundles (over the same topological space); this
dual adjunction restricts to a dual equivalence of categories (or duality) be-
tween corresponding full subcategories of sheaves and of étale bundles (see,
e.g., [19, p. 179] or [20, p. 89]). Transferred to linguistics in our [28], it yields
the following result:

Theorem (Frege Duality). The generalized compositionality and contextuality
principles are formulated in terms of categories those are in natural duality

Schl(X) <:>? Context(X)

established by the section-functor I and the germ-functor A, the pair of adjoint
functors.

Each fragmentary meaning s € .%(U) determines a function $: x +—
germ s to be well-defined on U; for each = € U, its value $(z) is taken
in the stalk .%,. This gives rise to a functional representation

nU): s— s (11)

defined for all fragmentary meanings s € .#(U). This representation of a
fragmentary meaning s as a genuine function § provides an insight into the
nature of fragmentary meanings. Each fragmentary meaning s € .7 (U),
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which has been described in Sect. 5 as an abstract entity, may now be thought
of as a genuine function $ defined on the fragment U of a given text. At the
argument (sentence) x € U, this function s (representing s) takes its value $(x)
to be the contextual meaning germ_ s of this sentence x

x +— $(x) = germ,s (12)

Remark. Due to the functional representation (I, the Frege duality is of a
great theoretical importance because it allows us to consider any fragmentary
meaning s as a genuine function $: x; — germ, s that assigns to each sentence
x; € U its contextual meaning germ, . s, and which is continuous on U Itallows
us to develop a kind of dynamic theory of meaning [28,31,34] describing how,

during the reading of the text X = (x1,x9,3,...,2,), the understanding
proceeds through the discrete time ¢ = 1,2, 3, ..., n as a sequence of grasped
contextual meanings ($(z1), $(x2), $(x3),...,$(x,)). That gives rise to a

genuine function $ on X representing some s € .%(X); this s is one of
possible meanings of the whole text X interpreted in the sense .%.

Moreover, this duality gives a solution to an old problem concerning delicate
relations between Frege’s compositionality and contextuality principles, in
revealing that the acceptance of one of them implies the acceptance of the other
(see, e.g., [31]).

8. Sheaf-theoretic dynamic semantics

We sketch now a formal model of a natural language text understanding, which
is a kind of dynamic semantics we proposed in [29,31,34]. Our approach de-
scribes the dynamics of interpretation process that results in the understanding
of a certain meaning of the whole text in its integrity. With the notations used
above, for a given text X = (x1,...,x,) interpreted in a sense .%#, we have to
describe how a reader finally grasps some global section s € .% (X)) of a sheaf
# of fragmentary meanings.

We consider first a particular case of reading from the very beginning of an
admissible text X = (x1,x2,x3, ..., x,) whose size is short enough to allow
areading at one sitting. The general case will be reduced to this particular case
by means of the generalized Frege’s compositionality principle.

The first sentence z; in the order < of writing must obviously be understood
in the context that consists of its own data. This means that a first sentence
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x1 constitutes an open one-point set {1 }. Thus U, = {x1}, and hence the
sentence x; should be a minimal element in the specialization order; therefore
Fay = F({@1}).

This means that the grasping of a contextual meaning of x; is equivalent to
the grasping of a fragmentary meaning of the fragment {z} reduced to this
sentence 1. It is obviously equivalent to the grasping of a global meaning of
this sentence z; at the semantic level of a sentence considered as a sequence
of words. We understand first the theme (topic) of this sentence z;, and then
we understand the rheme (comment) as what is being said in the sense %
concerning this theme. Thus, we have done a descent from the level of text to
the level of sentence. In our reasoning, it is the basis of induction.

Let us now do the induction step. Let us suppose that we have read
and understood the text X in the sense .# from the beginning x; up to
the sentence xy, 1 < k < n. That is, we suppose that we have already en-

dowed X = (x1,...,x) with a phonocentric topology and we have built
a suite ($z,...,5;,) of contextual meanings of sentences of the open
set U = (z1,...,x) of a given text X = (x1,...,2,...,2y,). The suite
(S215 .-, 84, of contextual meanings is a continuous function that represents

some fragmentary meaning s € .7 (U).

We consider the interpretation process at its (k + 1)-th step as the choice
of an appropriate context Uy, , for xjy; that endows the initial segment
(21, ...xE41) With a particular phonocentric topology among many possible,

and allows us to extend the function s defined on the open (z1,...,x) to a
function defined on the open (z1, ..., Zk41)-
The phrase x4 is read in the context of the fragment (x1,...,zx41) of

the text X. This neighbourhood is the most large context among possible
ones we dispose to understand the contextual meaning of z1. To grasp the
same contextual meaning of zj1, it suffices to understand only its minimal

neighbourhood Uy, ., . It may be two cases:

Case 1°. It may happen that the understanding of the sentence xj4p is
independent of the understanding of U = (1, ..., xy), for it constitutes alone
its own context {wy,1} = Uy, ,, because there is here a turning point in the
narrative, what may be confirmed by various morphologic markers such as the
beginning of a new chapter, etc. The contextual meaning s, , is defined at a
point 1, and as such it is a continuous function because {xj1} constitutes
an open set.
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The process of understanding of x4 is therefore conducted in the same
way as that one of the first sentence x; whose case we have considered above
as the basis of induction.

Note that the interval U = (x1,...,x)) is open. We can therefore ex-
tend the suite ($,,...,5$;,) we supposed to be a continuous function on
U = (x1,...,xx) to the suite (35, ..., 54, ,) that is a continuous function on
(131, e ,xk+1).

Case 2°. The understanding of x 1 is reached with the support of the under-
standing of the preceding sentences of the interval U = (x1, ..., zx). Not all
the sentences in U = (1, ..., z}) are required to determine the understanding
of zj4+1, but only some subsequence of U. Let V be a subsequence of U,
such that V' contains only sentences those are required for the understanding
of xx41. We define a phonocentric topology on (x1,...,xk+1) by defining
ka+1 =Vu {iL‘k_H}.

Now we transform the subsequence V' into one sentence in such a way that
each sentence of V, except the first in the order < of writing, begins with “and
then” that assembles it to the preceding sentence in order to get a compound
sentence. This single lengthy sentence = is made up of all sentences of V'
in order to get the thematic context that allows the sentence x4 to express
its communicative content. Finally, we join zy,; to = by means of “and
then” inserted at the beginning of the sentence xj 1, that transforms x. ; into
another sentence 7, .

In the text (x1,..., 2y, 7),,,) so defined, the sentence x;_, ; constitutes an
open one-point set {x}_} that is understandable in the context of its own
data. A contextual meaning of ), 1 is grasped when we understand the rheme
of xx41 as being what is said in the sense .% concerning the theme of zj
in the context defined by the sentences of V. But obviously the contextual
meaning of 7, is the same as the contextual meaning of 1. So we have
extended the sequence of contextual meanings (5, ..., S, ) to the sequence
(Ba1s -+ 82p01)-

Thus, we have done a descent from the level of text to the level of sentence.
This trick is inspired by Russell’s work How I write [38]], where he discuss
advises he received at the beginning of his career of a writer.

We consider now a general case of reading of an admissible text X whose
size does not allow us to finish reading at one sitting. In this case, we consider
the reading process of a text X as its covering by some family of meaningful
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fragments (U;) e already read, thatis X = (J,. ; U; is an open covering.

Let us suppose given a family (s;);ecs, where s; € % (U;) such that all
genuine functions s;: « — germ,s; of the corresponding family (s;);c s are
pairwise compatible, that is s; ‘UmUj () =s; {UimUj (x)forallz € U; N U;.

Let us define the function ¢ on X = J;.;U; as t(z) = §j(z) if z € U;
for some j. The Frege duality theorem states that ¢ = § where s € % (X)
is a composition of the family (s;);cs, whose existence is ensured by the
generalized Frege’s compositionality principle.

The formalization of the interpretation process as an extension of a function
introduces a dynamic view of semantics, and its theory deserves the term in-
ductive because the domain of a considered function is naturally endowed with
two order structures, that is, the linear order of writing < and the specialization
order =< of context-dependence. We have outlined so a sheaf-theoretic frame-
work for the dynamic semantics of a natural language, where the understanding
of a text X in some sense .7 is described as a process of step-by-step grasping
for each sentence z; of only one contextual meaning $(z;) from the fiber .#,,
lying over z; in the étale bundle Context(X) of contextual meanings.

9. Algebraic semantics versus sheaf-theoretic semantics

According to T. M. V. Janssen, the compositionality principle is a basis for Mon-
tague grammar, Generalized phrase structure grammar, Categorial grammar
and Lexicalized tree adjoining grammar. These theories propose the different
notions of meaning, but follow the compositionality principle in its standard
interpretation:

A technical description of the standard interpretation is that syntax and
semantics are algebras, and meaning assignment is a homomorphism from
syntax to semantics. (T. M. V. Janssen [15, p. 116])

Let us consider this conception of standard interpretation as an algebraic
homomorphism f: A — B, where the algebra A is representing Syntax, and
the algebra B is representing Semantics.

Whatever the algebras A and B would be, the homomorphism f is a function
in a set-theoretic paradigm. Given the function f, we define the relation q on A
so that (z,y) € q, if and only if f(z) = f(y). Clearly, this q is an equivalence
relation on A. Any given element a € A lies in precisely one equivalence
class; if f(a) = b € B, then the equivalence class of a is f~!(b). The set of
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equivalence classes is denoted by A/q and called the quotient set of A by q. Let
the equivalence classes of a be denoted by af. If with each x € A we associate
x%, we obtain a function e: A — A/q, called the identification associated with
q. Clearly the function ¢ is surjective, by definition. Following the Theorem
3.1 of [4, p. 15], there is a decomposition of f:

A%B

| [
Alq —I= fa),

where e: A — A/q is a surjection, f: A/q — f(A) is a bijection, and
w: f(A) — B is an injection.

In the category of algebras, an injective homomorphism is called a monomor-
phism; a surjective homomorphism is called an epimorphism; every bijective
homomorphism should be an isomorphism (usually defined as an invertible
homomorphism). The above decomposition theorem remains valid in the cate-
gory of algebras; moreover, A/q and f(A) may be endowed with the structures
of algebras in such a way that e, f’, u become homomorphisms.

Linguistically speaking, the Syntax and the Semantics should not be one
and the same theory. Thus, the meaning assignment homomorphism f: A —
B should not be an isomorphism. Nor should this homomorphism f be a
monomorphism; otherwise the Syntax A would be isomorph with a proper part
of the Semantics B. Hence, f should be an epimorphism with a non-trivial
kernel that is defined to be the congruence relation ¢ described above. Two
different elements of an algebra A representing Syntax are congruent if and
only if they are mapped to the same element of an algebra B representing
Semantics. Thus, the different syntactical objects will have one and the same
meaning as their value under such a homomorphism f: A — B. Thus, an
algebraic approach is pertinent in the study of synonymy, but the problems
of polysemy do resist to algebraic semantic theories. Moreover, an algebraic
semantic, of whatever kind, is always static because the meaning f(x) € B
of a syntactic element 2 € A under the homomorphism f is calculated in the
algebra B just after the calculation of meanings of all syntactic components of
x was done.

However, when studying the process of interpretation of a natural language
text, we are confronted with a quite another situation. Any admissible text
is really a great universe of meanings to be disclosed or reconstructed in
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the process of reading and interpretation. But these multiple meanings are
offered to a reader as got identified in a single text. Thus, in the process
of interpretation of a natural language text, the reader is confronted with a
surjection Semantics — Syntax. Note that we have turned the arrow round,
and this is a paradigmatic turn.

From a sheaf-theoretic point of view, a discourse interpretation activity
proceeds as the following: The text X under interpretation is a given sequence
of its sentences =1, 2, x3, . . . , Tn; this is a finite combinatorial object from the
universe of Syntax. Over these sentences, there is another sequence of stalks
of their contextual meanings %, , %5y, Fasy, - - -, Fa,; this is a potentially
infinite and, in some degree, a virtual object from the universe of Semantics.
The total disjoint union of all these stalks, that is, the coproduct F' = | |,y -F,
is projected by a local homeomorphism p on the text X. Thus, we have the
surjective projection p: F' — X from Semantics to Syntax. The challenge of
text interpretation is to create a global cross-section s of the projection p; this
s is constructed as a sequence of grasped step-by-step contextual sentences’
meanings ($(x1), $(z2), $(z3), ..., $(xy,)); it gives rise to a genuine function
s on X representing some global cross-section s € .% (X); this s is one of all
possible meanings of the whole text X interpreted in the sense .#.

The proposed sheaf-theoretic semantics answers to crucial questions about
what the fragmentary meanings are and how they are formally composed.
That is, we consider the reading process of a fragment U in a sense .# as
its covering by some family of subfragments (U;),c, each read in a unique
session. Any family (s;);ecs of pairwise compatible fragmentary meanings
s; € #(Uj) under a functional representation (11) gives rise to a family
(5j)jes of genuine functions (where each $; is defined on U; by ), those
are pairwise compatible in the sense that §; ‘UmUj (x) = 3§ i, (x)
for all z € U;NUj. Let a cross-section s be defined on U = |J,c,; U; as
s(x) = $j(z) if x € U; for some j. Then this cross-section s over U is clearly
a composition of the family ($;) ;e as it is claimed by the generalized Frege’s
compositionality principle.

The sheaf-theoretic conception of compositionality serves as the basis for the
dynamic semantics we discussed in the Sect. 8. This approach has an advantage
because 1° it extends the area of semantics from the level of sentence or phrase
to the level of text or discourse, and it gives a uniform treatment of discourse
interpretation at each semantic level (word, sentence, paragraph, text); 2° it
takes into theoretical consideration the polysemy of words, sentences and texts.
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10. Sheaf-theoretic formal hermeneutics

Our approach provides a mathematical model of a text interpretation process
while rejecting attempts to codify interpretative practice as a kind of calculus.
In a series of previous papers [28,29,31-33], we named this text interpretation
theory as formal hermeneutics. It presents a formal framework for syntax and
semantics of texts written in some unspecified natural language, say for us
English, French, German, Russian considered as a means of communication.
The object of study in this formal hermeneutics are couples (X, .% ) made up of
an admissible text X and a sheaf .% of its fragmentary meanings; we call any
such a couple textual space. But this representation is possible only in the realm
of a language following the famous slogan of Wittgenstein, “to understand a
text is to understand a language”. Rigorously, this claim may be formulated
in the frame of category theory. Likewise, the present sheaf-theoretic formal
semantics describes a natural language in the category of textual spaces Logos.
The objects of this category are couples (X,.#), where X is a topological
space naturally attached to an admissible text and .7 is a sheaf of fragmentary
meanings defined on X; the morphisms are couples (f,0): (X,.%) — (Y,¥9)
made up of a continuous map f: X — Y and a f-morphism of sheaves 6 that
respects the concerned sheaves; such an f-morphism is formally defined as
0:9 — f..7,where f, is a well-known direct image functor (see, e.g., [31]).

Given any admissible text £ considered to be fixed forever as, for instance,
the Scripture, it yields a full subcategory Schl(E) in the category Logos of all
textual spaces. Named after Schleiermacher, the category Schl(F) describes
the exegesis of this particular text.

The topological syntax and the dynamic sheaf-theoretic semantics based on
Frege duality, as well as different categories and functors related to discourse
and text interpretation process are the principal objects of study in the sheaf-
theoretic formal hermeneutics as we understand it.
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1. Introduction

According to Frege

Identity is arelation given to us in such a specific form that it is inconceivable
that various kinds of it should occur [[7, p. 254][T]

In the second half of the 20th century this view was challenged by Peter Geach
[11] who developed a theory of what he called the relative identity. Contrary
to Frege, Geach holds that the identity concept allows for specifications, which
depend on certain associated sortals 7]

Geach’s unorthodox view on identity has been never developed into an inde-
pendent formal logical system and remain today rather marginal [2]]. However

I thank Danielle Macbeth for very useful comments and discussion.

1“Die Identitaet ist eine so bestimmt gegebene Beziehung, dass nicht abzusehen ist, wie bei
ihr verschiedene Arten vorkommen kénnen.”

2Let a,b be parallel lines on Euclidean plane, in symbols a//b. Given that // is an
equivalence relation, Frege suggests to “take this relation as identity” (in symbols a = b) and
thus obtain a new abstract object called direction (8| p. 74e]; (for a more detailed reconstruction
of Frege’s abstraction see [25]). Geach’s analysis of the same example is different: according to
Geach a = breads “a and b are the same as direction” even if a and b are different as lines.

© The Author(s) and College Publications 2017
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the idea that, contrary to Frege’s view, the identity concept can and should
be diversified more recently reappeared in a different form in Martin-Lof’s
Constructive Type theory (MLTT) [15] and in the yet more recent geometrical
interpretation of MLTT called Homotopy Type theory (HoI'T) [17]]. Unlike
Geach’s original proposal, which has hardly had any influence outside the
philosophical logic, HOTT is a piece of new interesting mathematics and math-
ematical logic closely relevant to Computer Sciences.

The aim of this paper is to analyze some of Frege’s ideas about identity in
terms of the identity concept as it appears in MLTT and HoT'T. In this way I
hope to make the technical MLTT-HoT'T identity concept more philosophically
meaningful and apt to possible applications in science.

The rest of the paper is organized as follows. In the next Section I present
Frege’s Venus example and overview its analysis by the author. In the following
three Sections I introduce a basic fragment of MLTT and HoTT and discuss
the difference between extensional and intensional versions of these theories.
Then I present a reconstruction of Frege’s Venus with HoT'T and discuss in
this context an ontological impact of the distinction between extensions and
intensions. Finally, I extend my reconstruction of Venus to what I call the
Basic Kinematic Scheme used in the Classical Mechanics and briefly discuss
its relevance in the Quantum Mechanics.

2. How identity statements are known?

Some identity statements are trivial and non-informative while some other are
highly informative and in some cases very hard to prove. For example “2 = 2”
(in words “two is two”) is trivial, “2 is the only even prime number” is somewhat
more informative but easy (since it follows immediately from the definitions
of “even” and “prime”), while “2 is the biggest power n such that the equation
™ +y™ = 2" has a solution in natural numbers” is both informative and highly
non-trivial (it is a famous theorem conjectured by Pierre Fermat in 1637 and
proved by Andrew Wiles in 1994).

A non-mathematical example of the same kind is given by Frege in his
classical On Sense and Reference 5] (English translation [6]]). Frege considers
three different names - Venus, Morning Star and Evening Star - which all refer
to the same planet. Frege wonders how it is possible that while the identity
statement
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Morning Star is Morning Star (D

and the identity statement,

Morning Star is Venus 2)

(which expresses a mere linguistic convention according to which “Venus” is
an alternative name of Morning Star) are trivial the statement

Evening Star is Morning Star 3)

is a non-obvious astronomical fact that needs an accurate justification, which
involves both a solid theoretical background and appropriate observational
datal3l

Where does the difference between informative and non-informative identity
statements come from? Frege does not provide a full answer to this ques-
tion but does provide a theoretical framework for answering it. For this end
he distinguishes between the sense and the reference of any given linguistic
expression[f]

Whether an identity statement is informative or not depends on its sense
(and hence on the sense of its constituents®) but not on its reference. Thus
there is no mystery in the fact that statements of the form a = a are always
trivial (assuming that both the sense and the reference of “a” is fixed), while
statements of the form a = b can be either trivial (when terms a, b have the same
sense) or non-trivial (when terms a, b have different senses). In expressions
(I) and (2)) both terms have the same meaning (even if in (2) these terms differ
linguistically) but in (3)) the senses of two terms are different. This is why (1)
and (2) are trivial but (3) is not.

3Instead of talking about trivial and non-trivial statements Frege uses here a Kantian dis-
tinction between synthetic and analytic judgements and talk about the “cognitive value” of the
corresponding “thoughts”. I shall not use Frege’s original way of expressing these ideas in my
presentation.

“Some writers who want to stress the originality of Frege’s logical ideas leave Frege’s
German terms for sense and reference (Sinn und Bedeutung) without translation even if they
write in English. I use standard English translations instead.

5This follows from a general principle known as the compositionality of meaning. Frege
is sometimes credited for the alleged invention of this principle but the true history is more
complicated [16].
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Obviously this is not a complete explanation. Frege’s system of symbolic
logic aka Begriffsschrift [3|] does not do full justice to his own distinction
between the sense and the reference of a linguistic expression [[14]f]. It provides
rules for operating with references of propositions (i.e., with their truth-values)
but does not provide rules for operating with their senses. So Frege points
to a problem but leaves it largely open. More recently a number of so-called
intensional logical systems have been developed, some of which have been
explicitly motivated by the idea of formalizing certain aspects of Frege’s sense.
The distinction between extensions and intensions of linguistic expressions
and logical terms is closely related to Frege’s distinction between sense and
reference [1]]. It has a long history in logic and its philosophy and turns out
to be instrumental in MLTT-HoT'T, as we shall now see. In the next section I
explain the technical meaning of this distinction in MLTT and then discuss its
philosophical underpinning.

3. Extension and intension

MLTT [15] comprises two different forms of identity concept[f| These two
forms of identity should look familiar to anyone who has at least a rudimentary
experience in programming. It’s one thing to assign to a certain symbol or
symbolic expression its semantic value (which can be a number, a character,
a string of characters and many other things) and it is quite a different thing
to state that certain things are equal. (Hereafter I use words “equal” and
“identical” interchangeably.) Only in the latter case one forms a proposition,
which typically has precisely one of the two Boolean values: True and False.
Outside the context of programming a similar distinction can be made between
naming or making some more elaborated linguistic convention, on the one
hand, and making a judgement to the effect that certain things are equal, on the
other hand. It is one thing to adopt and use the convention according to which
the goddess’ name Venus is an alias for what is also known as the Morning Star,
and it is, of course, quite a different thing to judge and state that two apparently
different celestial objects known as the Morning Star and the Evening Star are,
in fact, one and the same. In the latter case it is appropriate to ask for a proof.

¢The original version of this theory involves four different kinds of identity [15, p. 59]. 1
simplify the original account by deliberately confusing some syntactic and semantical aspects.
Then we are left with the two forms of identity described below in the main text.
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Such a demand is obviously pointless in the former case.

The first kind of identity (one related to conventions) Martin-Lof calls def-
initional or judgmental; the second kind of identity he calls propositional.
Following [17] I shall use sign “=" for the definitional identity and the usual
sign “=" for the propositional identity. Further, we should take fyping into
account. In MLTT both kinds of identity apply only to terms of the same type[’]
Typing is expressed in the notation as follows:

s,t: A “)

is a judgment that states that terms s, ¢ are of type A. Formula

s=pat ©)

stands for a judgement, which is tantamount to a convention (aka definition)
according to which terms s, ¢ of the same type A have the same meaning. Given
(3) one says that s, t are definitionally equal. The expression

s=ypt (6)

in its turn, stands for a proposition saying that terms s, ¢ of type A are equal.
Unlike (5) formula (6)) by itself does not express a judgment but only represents
a type. Under the intended proof-theoretic semantic of MLTT any term p of
this type is thought of as a proof of the corresponding proposition; in the proof-
theoretic jargon proofs are also called witnesses and sometimes evidences. So
the following judgement

p:s=pst (N

states that terms s, ¢ are (propositionally) equal as this is evidenced by proof p.

Let us now see what kind of thing such a proof p can possibly be. In MLTT
definitionally equal terms are interchangeable salva veritate as usual. Under
the intended semantic of this theory this means that definitionally equal terms
are interchangeable as proofs. This property of = and the reflexivity of = justify
the following rule

7] leave now aside how identity is applied in MLTT to fypes on the formal level. It is
sufficient for my present purpose to talk about the “same type” and “different types” in MLTT
informally.
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o ®
p:s=pt
where p = refl; is built canonically [17, p. 46]. In words: the definitional
identity (equality) implies the propositional identity (equality).

The converse rule is called the equality reflection rule or ER for short:

p:s=pt

s=at (ER)

In words: the propositional identity implies the definitional identity.

ER does not follow from other principles of MLTT but may be assumed as
an independent principle. In this case one obtains a version of MLTT, which
is called (definitionally) extensional. MLTT without ER is called infensional.
It can be shown that in the extensional MLTT any (propositional) identity
type s =4 t is either empty or has a single term, namely refl;, which is the
canonical proof of this identity “by definition”.

We see that ER makes the distinction between the definitional and the propo-
sitional identity purely formal and epistemologically insignificant. This feature
of extensional MLTT can be viewed as a desirable conceptual simplification
but it comes with a price. A significant part of this price concerns computa-
tional properties in MLTT and is important for applications of this theory in
programming: while the intensional MLTT is decidable but the extensional
MLTT is not. I shall not discuss this technical feature in this paper. Instead I
shall argue that the intensional MLTT has also important epistemic advantages
over its extensional cousin.

4. Fixing identities or leaving them evolving?

As we have seen in the extensional MLTT every identity is grounded in a
definition. In order to apply this formal theory in reasoning one needs to fix
in advance, via appropriate definitions, exact identity conditions for all objects
involved in a given reasoning. This logical and epistemic requirement is known
in the form of slogan “no entity without identity” due to Quine. It is interesting
to notice that Quine himself does not accept this slogan without reservations. In
Quine’s view the slogan applies only in scientific reasoning and, moreover, only
in the contemporary form of scientific reasoning. Bulk terms (aka mass terms)
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like “water”, according to Quine, are remnants of an archaic logical scheme,
which does not involve the individuation in its today’s form. Quine further
speculates that the contemporary “individuative, object-oriented conceptual
scheme” can be replaced in a future by a different scheme, that will provide a
“yet unimagined pattern beyond individuation” [I8| p. 24][¥| In what follows
I argue that the intensional MLTT along with HoTI'T provides such a pattern
“beyond individuation” or at least a pattern of individuation beyond its usual
extensional mode. But beforehand I would like to stress once again that the
standard extensional mode of individuation is not sufficient for certain well-
recognized and important scientific purposes. Frege’s Venus example, if one
takes it seriously, demonstrates this clearly. Fixing the identity of Morning
Star and Evening Star and Venus via a definition is a prerequisite for applying a
standard extensional logical scheme in any reasoning about this celestial object.
This condition makes it impossible to support with such a scheme a reasoning,
in which the identity of the Morning Star and the Evening Star is established
on the basis of certain sufficient evidences.

Frege’s example shows that “half-entities inaccessible to identity” [18, p. 23]
may look more familiar than Quine’s colorful language suggests. In the Venus
case we deal with a relatively innocent violation of “no entity without identity”
requirement. We start with certain well-defined objects such as the Morning
Star and the Evening Star but do not exclude the possibility that these objects
can be eventually proved to be the same - even if we know that this fact does
not follow from the corresponding definitions. Following Quine one may
think of further deviations from the standard extensional individuating scheme
and speculate about a possible conceptual scheme, which does not use the
definitional form of identity at all. I do not pursue this further project in this
paper. Instead I show how the innocent-looking modification of the extensional
individuating scheme, which has been just explained, results into a remarkable
diversification of the standard identity concept.

8Here is the full quote:
“[W]e may have in the bulk term a relic, half vestigial and half adapted, of a pre-individuative
phase in the evolution of our conceptual scheme. And some day, correspondingly, something
of our present individuative talk may in turn end up, half vestigial and half adapted, within a
new and as yet unimagined pattern beyond individuation. Transition to some such radically
new pattern could occur either through a conscious philosophical enterprise or by slow and
unreasoned development along lines of least resistance. A combination of both factors is
likeliest [ ... ].” [18, p. 24]
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5. Higher identity types

Recall that the intensional version of MLTT has been introduced above via a
negative characteristic: it is the core version of MLTT without the additional
reflexion rule ER.

The absence of ER allows for constructing further identity types as follows.
Suppose we have a propositional identity type and a pair of terms of this type:

sitis=yt

Terms s, t' witness here the identity of terms s,¢. It may now happen that
these two witnesses are, in fact, one and the same - as witnessed by two further
terms s”, t":

"o,
A

/
S 18 ==t t

Thus we get a tower-like construction, which comprises identity types of two
different “levels”. It can be further continued indefinitely. In the general case
such a construction may have, of course, more than just two elements on each
level.

Until the late 1990-ies structural properties of this formal syntactic construc-
tion remained opaque. Since the intentionality in MLTT is a mere lack of
extensionality, any model of the extensional MLTT also qualifies as a model
of the intensional version of this theory. In 1994-1998 Hofmann and Stre-
icher [12}/13]] published the first non-extensional model of MLTT where the
first-level identity types were modeled by abstract groupoids. This model al-
lows the first-level identity types (i.e., types of the form s =4 ¢t where A is a
type other than identity) to have multiple non-trivial terms (proofs) but does
not allow the same for higher identity types. In other words, this model verifies
the condition called “extensionality one dimension up”. A deeper insight into
the structure of higher identity types has been obtained around 2006 when
Awodey and Voevodsky independently observed that the abstract groupoids of
Hofman and Streicher’s model can be thought of as fundamental groupoids
(i.e., groupoids of all continuous paths) of topological spaces and be further
extended to homotopy- and higher-homotopy groupoids of the same spaces,
which model higher-order identity types of MLTT. Thus the Homotopy theory
allows for building models of MLTT, which are “intensional all the way up”.
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In such models the identity types of all levels are modeled uniformly. This dis-
covery marked the emergence of a new theory known today under the name of
Homotopy Type theory and of a closely related foundational project called the
Univalent Foundations of mathematics. For a systematic exposition of HoI'T 1
refer the reader to [17]9]

Unlike Russell’s type theories HOI'T does not form its hierarchy of types by
considering, first, classes of individuals, second, classes of such classes, and
so on. The hierarchy of types in HOI'T is of a geometric or, more precisely,
homotopic nature. Sets are taken to be types of zero level. Terms of O-types
are points having no non-trivial paths between them. Terms of 1-types are
points provided with non-trivial paths between them, but not allowing for non-
trivial homotopies between these paths. Terms of 2-types allow for paths and
non-trivial homotopies but not for non-trivial higher homotopies. And so on[9]

Notice the cumulative character of the homotopical hierarchy of types
described above. Considered in isolation, the identity types s =4 ¢ and
s =s—,+ t' have exactly the same formal properties; correspondingly, there
is no intrinsic difference between spaces of points, spaces of paths (aka path
spaces) and homotopy spaces of all levels. As usual in the 20-th century geom-
etry one is allowed in HoT'T to imagine elements of spaces however one may
find it useful - say, as beer mugs after Hilbert’s legendary suggestion. However
the fact that every path s’ is not simply an individual of certain sort but an object
with a pair of endpoints s, ¢, allows for the two-level construction described
above. Similarly one obtains n-level constructions by using homotopies and
higher homotopies. In order to describe the resulting hierarchy more formally
and more precisely we need to complement the bottom-up description used so
far but a top-down one. For this end we assume from the outset that every type
is a space provided with its infinite-dimensional fundamental groupoid. Then
we specify the case of O-types such that all its paths, homotopies and higher
homotopies are trivial; then the case of 1-types such that all its homotopies and
higher homotopies (but not paths!) are trivial, and so on.

9Since this area of research is rapidly developing, the 2013 book [17] does not include
certain new results and developments. However it provides an systematic introduction, which is
more than sufficient for my present purpose.

10Here I follow [17, p. 99-100]. On an alternative count the O-type is a single point, 1-types
are propositional types while sets are 2-types. The count adopted in [17] appears more natural
from a logical point view (given the usual understanding of logic) while the latter count used by
Voevodsky in his lectures appears more natural from a geometric point of view.
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A given n-type can be transformed into its underlying m-type with m < n
by forgetting (or, more precisely, by trivializing) its higher-order structure of
all levels > m. Such an operation is called in HOI'T truncation. It will play an
important role in what follows.

The logical significance and the possible epistemic function of higher identity
types in MLTT are not yet well understood. The present work is an attempt of
filling a part of this gap. In what follows I consider only 0- and 1-types and
leave a study of higher identity types for a future work.

6. Is Frege’s Venus example linguistic?

Apparently Frege treats his Venus example as purely linguistic on equal foot-
ing with his other examples, which involve Alexander the Great, Columbus,
Napoleon, Kepler dying in misery, Bucephalus and what not. Accordingly,
the main result of his classical paper [5, 6], namely the distinction between the
sense and the reference of a given linguistic expression, belongs primarily to
the philosophy of language. Frege scholarship mostly follows Frege in this
respect: a linguistic leaning aka linguistic turn became a brand mark of the
influential Analytic branch of the 20th century and today’s philosophy. It is
quite remarkable, however, that when Frege first introduces and explains the
Venus problem he does this not only in linguistic terms:

The discovery that the rising Sun is not new every morning, but always the
same, was one of the most fertile astronomical discoveries. Even today the
identification of a small planet (i.e., an asteroid - A.R.) or a comet is not
always a matter of course. [6, p. 56]

The idea that a logical analysis of ordinary language can be helpful for
solving problems of object identification in science in general and in astronomy
in particular is based on Frege’s strong assumption according to which the
identity concept is the same in all these cases, so that “it is inconceivable that
various kinds of it should occur” (see the full quote and the reference in the above
Introduction). Without trying to challenge this approach on the methodological
level I shall provide here an alternative analysis of the same example, which
takes its physical content and, even more importantly, its related mathematical
form more seriously and applies some basic elements of HoI'T introduced in
the previous Section. As a matter of course this reconstruction is not intended
to be a piece of mathematical physics. Nevertheless it provides a novel formal
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approach to traditional metaphysical issues concerning the identity through time
and motion, which may be possibly helpful for dealing with identity-related
problems of modern physics [9L{10].

Frege’s remark about the rising Sun quoted above applies both to the Morning
Star (M S for short) and to the Evening Star (ES). These two putative objects
are posited as invariants of certain sets of observations made in different places
at different times by different people with different astronomical instruments
and with the naked eye. However for the sake of the example I leave now
this complex underlying structure aside and boldly assume that M .S and ES
are provided with some appropriate definitions, which allow all observers to
identify these objects unambiguously. How a proof of identity M .S = E'S may
look like in a realistic astronomical context? Classical Celestial Mechanics
(CM), or more precisely a very basic fragment of CM that I shall call Basic
Kinematic Scheme (BKS) and discuss in more detail in Section 8, provides
a definite answer to this question. In order to prove that M.S = ES it is
necessary and sufficient to present a continuous path aka trajectory p, which
connects M S and E S and thereby shows that these “two” objects are in fact one
and the same. The wanted trajectory p is itself a typical physical object: it is
obviously theoretically-laden, it has a canonical mathematical representation,
and it is accessible for observations which allow for empirical checks of its
theoretically predicted properties. Providing such a proof p amounts to a
combination of theoretical work and observation, which is typical in astronomy
and any other mature science[!]

Since proof p has empirical contents it can not be called formal. However
it has a mathematical form, which is expressed within HoT'T straightforwardly.
As we shall briefly see, this form qualifies both as logical and geometrical. The
fact that in HoT'T logical and geometrical forms go together, makes HOT T quite
unlike other popular formal systems such as the Classical First-Order Logic

The identity conditions of p depend on those of M S, ES, which are left here without a
precise specification. If we assume that M S and E'S are enduring spatial objects repeatedly
appearing on the sky then we should think of p as a fragment of the planet’s orbit. Alternatively
(and less realistically), if we think of M.S and ES as particular spatio-temporal events which
occur in a particular morning and a particular evening, then we should think of p as a continuous
process that begins with M.S and ends with E.S. The HoTT-based reconstruction of Frege’s
Venus example given in this Section does not depend on one’s specific assumptions about space,
time and motion. The idea of identification of spatial objects or spatio-temporal events via
continuous paths, which makes part of BKS, is compatible with many different physical theories
and many different ontologies.
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Figure 1: Morning Star and Evening Star are the same

(FOL), see my [19, ch. 7, 10], for a further discussion on this general issue.
Remarkably, the geometrical form of p provided by HoT'T (namely, a path) and
the standard geometrical representation of the same object provided by CM and
BKS (namely, a continuous curve) turn out to be alike[™|

First, we need to specify a type (which under the homotopical interpretation
is thought of as a space) where M S and ES belong. Since M S, ES and
other celestial bodies are conceived in CM as point-like objects I call the
corresponding type/space Pt and think of it as a collection of points:

MS, ES : Pt

Then we form a new type/space M'S =p; ES, which is a space of continuous
paths between M S and E'S. Finally, we specify a particular path p in this space
and form a judgment:

p:MS:ptES

12]n the standard Homotopy theory a path is not simply a curve but a parameterized curve.
More formally path p with endpoints A, B is a continuous map [0, 1] — S from the unit interval
to space S where points A, B belong, such that p(0) = A and p(1) = B. “Paths” about which
usually talk HoT T-theorists (as in [17]), cannot be straightforwardly identified with paths of the
standard Homotopy theory [22]. But for our purposes the concept of path in the sense of HoI'T
will suffice: it combines the formalism of HoTT with a mixture of pre-theoretical spatio-temporal
intuitions about paths and more elaborated geometrical intuitions (rather than precise concepts)
borrowed from the standard Homotopy theory and some other branches of mathematics. By
interpreting Frege’s Venus in terms of HoI'T I extend this intuitive part of HOI'T with certain
additional pre-theoretical intuitions concerning space, time and motion. Conversely, HoT'T
serves me as a formal tool allowing for putting these pre-theoretical intuitions into an order.
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that says that M S and E'S are the same as evidenced by p. However little of
HOTT’s resources we use here, this reconstruction of Frege’s example provides
some useful lessons as we shall now see[5]

7. Are intensions real?

Recall Frege’s question: What is the difference between the sense of proposition
(1) (M S = M S) and the sense of proposition (3) (M S = E.S)? Itappearstobe
in accord with Frege to assume that senses of propositions depend functionally
on their corresponding proofs (even if proofs and senses are not exactly the
same). Then our reconstruction of Venus allows for a precise mathematical
answer to Frege’s question: while the (unique) proof of (1) is trivial loop
reflyrs, the proof of (3) is anon-trivial path p. Inboth cases a given proposition
has a single proof. However these two proofs essentially differ not only in their
intuitive “sense” but also in their geometric representation.

Let us now turn to some ontological issues. Albeit the concept of proof
is epistemic par excellence, the HoI'T-based reconstruction of Venus makes it
clear that proofs in the standard proof-theoretic semantic of MLTT should not
be necessary thought of as purely mental constructions. Thinking about such
proofs as truthmakers opens a way to various forms of truthmaker realism [24)).
Whether or not one takes Venus and/or its trajectory p to be real entities

13The proposed HoT'T-based reconstruction of Frege’s Venus example may not capture
some aspects of Frege’s volatile notion of sense. This notion may comprise more than HoI'T in
its existing form is able to detect. For example, arithmetical propositions

242=14 ©)

and

4=4 (10)

arguably have different senses. However the standard Peano-style formalization of arithmetic
used in HOTT treats both equalities (9) and (I0) as definitional and thus doesn’t allow for non-
trivial proofs of (9), see [17, p. 36 ff]. Atthe same time, given Frege’s specific view on arithmetic
as a part of logic developed in his [4], it is not obvious to me that the view that (9) and (10)
have one and the same sense is indeed untenable in a Fregean conceptual framework. Under
this view (9) is a logical truth but M.S = ES is a fact of the matter, so the apparent analogy
between the two cases should be judged as merely linguistic and superficial. This controversial
issue has no bearing on my following argument. I thank an anonymous referee for pointing to
this arithmetical example.
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depends, of course, on a particular ontology that one may associate with CM or
another theory supporting the relevant astronomical observations. In particular,
CM allows for a 4-dimensional ontology where atomic entities are points of
Classical aka Neo-Newtonian space-time [23 p. 202 ff]. In this ontological
framework p, seen as a world-line, qualifies as a full-fledged entity while the
moving object Venus is its momentary slice. I shall not discuss here details of
this and rival ontologies but rely on the fact that p of our example allows for
natural realistic interpretations.

According to Frege, senses should not be thought of as psychological en-
tities belonging to individual minds [6, p. 38-39]. However he suggests that
senses wholly belong to human collective memories stored in existing natural
languages. The only way in which a given sense can be possibly related to the
non-human parts of our world, according to Frege’s account as I understand
it, is via the reference (if any) of the corresponding linguistic expression. For
example English word “apple” has a sense, which belongs to this language
(and arguably is shared by other natural languages) and a reference, which is
a real thing that may exist independently of any linguistic and other human
activities. English word “unicorn” equally has a sense but has no reference; so
this particular sense is detached from any non-human reality.

The above is a rough interpretation of Frege’s view but it points to a com-
mon idea about linguistic meaning, which is worth being considered here.
Since Frege’s concept of sense and the logical concept of infension are closely
related (see the end of Section 2 above), the standard examples of so-called
intensional contexts apparently provide a further linguistic support to this idea.
Such examples always have to do with intentions, beliefs, knowledge and other
human-related issues. So these examples square well with Frege’s view accord-
ing to which propositions (1) and (3) have “different cognitive values” because
their senses are different - in spite of the fact that their reference (truth-value)
is the same.

Our analysis of Venus suggests a revision of this view. Since proofs are
constituents of senses (of propositions), and since these proofs admit realistic
interpretations, such realistic interpretations may extend to senses. What I have
in mind is not a justification of some form of Meinongian existence of unicorns
but rather the view that the distinction between the sense and the reference of
a given linguistic expression must be freed from all ontological commitments
altogether. The idea that the reference is the only linguistic anchor that links



Venus Homotopically 259

human languages and the human cognition to non-human realities is hardly
justified. Sense and reference and their logical counterparts such as intensions
and extensions of concepts all make part of (various versions of) our conceptual
apparatus. How this apparatus connects us, humans, to non-human realities is
a question, which cannot be answered only by means of logical and conceptual
analysis.

I submit that behind the view on meaning, which I purport now to criticize,
is the following strong ontological assumption:

All real entities are individuals. (OE)

For further references I shall call this assumption the ontic extensionality or
OE for short. The reason why I call this assumption extensionality becomes
clear from a homotopical reconstruction of Frege’s distinction between sense
and reference, which generalizes upon the above reconstruction of Venus as
follows. References are point-like individuals belonging to classes of alike in-
dividuals, which constitute extensions of their corresponding concepts. Senses
are higher-order homotopical structures, which involve spaces of paths and their
homotopies (including higher-order homotopies), and constitute intensions of
the same concepts. As we have already seen, in the extensional version of
HoTT the higher-order part of the structure is truncated. Hence the name for
OE, which allows the truncated higher-order part of the structure to have an
epistemic and cognitive value but includes in the ontology only its basic 0-level
part.

From this point view it appears reasonable to claim that talks of apples, of uni-
corns, of Bucephalus and of Alexander the Great have the same logical form, so
the words “apple” and “unicorn” both have a sense and a reference. By the refer-
ence of “unicorn” I understand here a fictional individual. Propositions about
apples and unicorns may well allow for the same forms of truth-evaluation.
The difference between merely fictional, legendary and real entities concerns
material (contentful) rather than formal features of truth-evaluation. There is
no way to distinguish between a fiction, a legend, and a historical fact on purely
formal grounds[™]

14The Bucephalus example demonstrates this particularly clearly. Bucephalus is a legendary
horse belonging to Alexander the Great. According to the legend Bucephalus was born the
same day as Alexander and, according to a particular version of the same legend, he also died
the same day as Alexander. I don’t know about a verdict of today’s historical science as to how
much of this story (if any) is a historical fact and how much of it is a fiction. I don’t believe that
any advance in formal logic may help for answering this question.
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I can see no a priori reason for assuming that a part of the homotopic structure
is more apt to represent reality than any other. For that reason I don’t take OE
for granted. Moreover that our reconstruction of Venus suggests that terms of
1-types (paths) allow for a realistic interpretation as well as terms of O-types
(points). However in the next Section we shall see that the situation is not so
simple, and that BKS is compatible with OE after all.

Concluding this Section I would like to remark that OE goes along the view
according to which the Classical first-order logic (FOL) should be seen and used
as the basic logical tool for scientific reasoning. In this context the suggestion
to drop OE and allow for higher-order entities sounds a part of an argument in
favor of a higher-order system of logic with a standard class-based semantics.
MLTT and HoTIT indeed qualify as higher-order systems in a relevant sense
but the homotopical semantic used in HoI'T is not standard. In HoI'T higher
types are formed not by the reiteration of the powerset construction (i.e. not
by considering classes of classes of ... of individuals) but in the geometric
way, which has been briefly explained in Section 5 above. Our homotopical
reconstruction of Venus given in Section 6 demonstrates how the geometric
semantic of HOI'T helps one to use this theory as a tool for mathematical
modeling in science, not only as a tool for a logical analysis of science. I
believe that this dummy example points to interesting theoretical possibilities
in mathematical physics. For serious attempts to use HoI'T and its logical
structure in physics see [20}21]].

8. Basic kinematic scheme

Here I supplement the homotopical reconstruction of Venus from Section 6 with
a similar reconstruction of the Basic Kinematic Scheme (BKS), which captures
the usual idea of moving particle. The kinematic space K, in which M S and
ES live, allows for multiple paths (trajectories) sharing their ending points. 1
think about K not as a vehicle of moving particles but rather as a collection Pt
of such particles provided with appropriate criteria of identity and an additional
structure, which represents their relative motions. The motions are represented
by paths between the particles as in the Venus example. The additional structure
is that of groupoid of paths over Pt. I do not include into &K homotopies of paths
beyond the trivial ones because such things play no role in BKS. Paths in K are
assumed to be reversible and composable by concatenation; the composition is
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MS 61/ ES

Figure 2: Multiple Paths of Venus

associative[ In terms of HOTT K qualifies as a 1-type; Pt is the underlying
O-type of K obtained from K via the (0-)truncation.

Let me now briefly reproduce the above homotopical reconstruction of Venus
in this slightly extended context. We take two points M .S, E/S in Pt (and hence
in K) and consider the path space M .S =p; ES. Thenwe findin M'S =p; ES
a particular path p, which serves us as a proof of identity MS = ES. The
extended context allows us now to notice an interesting feature of BKS, which so
far remained out of the scope of our analysis. Consider the following additional
principle, which I'll call the uniqueness of actual path:

There is at most one path between any two given points. (UAP)

Prima facie Venus does not verify this principle. Indeed, Venus’s orbit, which
is a topological circle, admits two different paths p, ¢ between M .S and ES
and further, via composition, two non-trivial loops ¢p and pq for M S and E S
correspondingly:

The above picture represents M .S and ES as apparently different but in fact
the same body, which moves along its circular orbit. But neither this picture

151n the usual Homotopy theory the composition of paths in a given space S is defined only
up to homotopy; in order to define such an operation one is obliged to provide an appropriate
homotopy aka reparameterization by hand. Since in HoT'T homotopy types are primitive objects
this issue is treated a bit differently. We stipulate an abstract groupoid K without assuming
any ambient space S in advance, and then see how much of BKS can be recovered in this way.
This approach allows us to describe the composition of paths in K as concatenation without
mentioning homotopies.
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nor K construed as above reflects the usual idea that one and the same particle
cannot follow two different paths simultaneously. This is not particularly
surprising since time did not feature in our construction of K so far. I am not
going now to fill this gap by providing K with an explicit representation of
time. Instead, let us consider a model of UAP in the given framework. UAP
can be satisfied if we think of M S as “Venus at time ¢1” and of E.S as “Venus
at (later) time ¢o”. Then during the time period A = [t1,t2] Venus follows a
unique path p, which can be described as a segment of ‘Venus’s worldline in an
appropriate spacetime['® This shows that we may use UAP for accounting for
a time-related feature of BSK without introducing time explicitly. It is quite
remarkable because UAP involves only very basic concepts of HOT'T and has a
purely formal character; it can be itself easily expressed in HoI'T.

If we now add a natural assumption that the propositional identity is an
equivalence (which excludes “split” or “branching” identities) then UAP re-
duces possible forms of K to a trivial spaghetti-like form. In this case each
particular connected component or “noodle” of K can be called a worldline
of its corresponding particle (point). Since every noodle is contractible into a
point, in this case K and Pt are homotopically equivalent. They represent the
same 0-level homotopy type K ~ Pt making redundant the very distinction
between them. However the distinction between K and Pt becomes useful
again when one distinguishes between actual and possible paths. Indeed, it
is plausible to assume that given actual path p with endpoints M S, E.S BKS
allows for other possible paths with the same endpoints. In other words, BKS
allow bodies to follow trajectories, which differ from their actual trajectories.
Now we can think of K as groupoid of possible paths where UAP does not hold
and distinguish its subgroupoid A C K which comprises only actual paths
and for which UAP holds. In this case O-truncation K — Pt ~ A becomes
non-trivial and represents a realization of certain possible paths.

The above analysis of BKS appears to be an appropriate starting point for
building a Quantum counterpart of this conceptual scheme. From the ho-
motopical point of view there is nothing impossible or unnatural in the idea
that a given particle may follow multiple trajectories simultaneously as this is
assumed in the Feynman path integral formulation of Quantum Mechanics:

In the present conceptual framework one may rather inquire into the nature

16Since we are talking about the Classical Mechanics but not about the Relativistic Mechan-
ics, the relevant notion of spacetime is that of the Neo-Newtonian spacetime, see [23, p. 202 ff].
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Figure 3: Quantum Paths

of UAP. What is behind the traditional notion according to which the actual
trajectory of a given particle during its lifetime is necessary unique?

In order to provide a tentative answer let us return to the issue discussed
in the last Section. The above analysis of BKS apparently provides an addi-
tional evidence in favor of ontic extensionality (OE). The intensional groupoid
structure of K represents possible trajectories of particles. But since in the
real world each particle has its unique worldline the groupoid K is reduced
(truncated) to the extensional set A ~ Pt. Conversely, OE in the given context
implies UAP. However OE is compatible with BKS only if one understands
the modal property of being possible (for paths) in purely epistemic terms - say,
as a lack of knowledge about the actual trajectories. Alternatively, one may
think about possible paths in K as physically real. This latter view violates OE
but it is not wholly unreasonable. Quantum Mechanics where UAP does not
apply, provides additional reasons for taking it seriously. I stop here and leave
an attempt to develop a HoT'T-based theory of identity for Quantum Mechanics
for a different occasion.
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Abstract: I will give a short exposition of Independence-Friendly logic (IF logic),
a system of logic which extends ordinary first-order logic with arbitrary patterns of
dependent and independent quantifiers. Truth and falsity of IF sentences is defined in
terms of the existence of winning strategies in a 2-player win-lose games of imperfect
information. One consequence of imperfect information is the existence of indeter-
minate IF sentences (on finite models). I sketch how indeterminacy may be overcome
using von Neumann’s Minimax Theorem. My exposition draws on ideas in [6].
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Introduction

In a seminal paper [2], Goldfarb points out that “The connection between quan-
tifiers and choice functions or, more precisely, between quantifier-dependence
and choice functions, is the heart of how classical logicians in the twenties
viewed the nature of quantification.” [2, p. 357]. For a less historical but more
systematic point of view [8]], Terence Tao, notices that we know how to render
in first-order logic statements like:

1. For every z, there exists a y depending on x such that B(z, y) is true
and
2. For every z, there exists a y independent of x such that B(x,y) is true.

The first one can be rendered by

VaIyB(z,y)

© The Author(s) and College Publications 2017
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and the second one by

JyVaB(x,y).

(Here B(x,y) is a binary relation holding of two objects x, y). Things become
more complicated when four quantifiers and a 4-place relation Q(x, 2’,y,v’)
are involved. We can express in first-order logic statements like:

3. For every x and 2/, there exists a y depending only on z and a 3’ depending
on z and «’ such that Q(z, 2, y,y’) is true

and

4. Forevery x and 2/, there exists a y depending on = and 2’ and a ¢’ depending
only on z’ such that Q(z, 2/, y, ') is true

by

Va3yva' 3y Q(x, 'y, y)

and

Va'3y'VaIyQ(z, o', y, y')
respectively. However, Tao continues, one cannot always express the statement

5. For every x and 2/, there exists a y depending only on x and a 3’ depending
only on ' such that Q(x, ', y,v’) is true.

His conclusion is that

It seems to me that first order logic is limited by the linear (and thus totally
ordered) nature of its sentences; every new variable that is introduced must
be allowed to depend on all the previous variables introduced to the left
of that variable. This does not fully capture all of the dependency trees of
variables which one deals with in mathematics. (Idem)

1. Independence-friendly logic

Independence-friendly logic (IF logic) introduced by Hintikka and Sandu in [4],
is intended to represent patterns of dependence and independence of quantifiers



On a Combination of Truth and Probability: Probabilistic IF Logic 269

like those exemplified by 5 which go beyond those expressible in ordinary first-
order logic. More exactly, IF logic contains quantifiers of the form

(Fz/W) (Yo /W)

where W is a finite set of variables. The intended interpretation of (Jz/W)
is: the existential quantifier 3z is independent of the quantifiers which bind the
variables in W. The notion of independence involved here is a game-theoretical
one and corresponds to the mathematical notion of uniformity. The example 5
above will be rendered in the new formalism by:

vava' Gy /{2'}) By [{z, y)Q(x, 'y, ).

The original interpretation of IF formulas is given by semantical games of
imperfect information. An alternative, equivalent interpretation is by skolem-
ization. We shall adopt the latter.

2. Truth in IF logic

Let ¢ be a formula of IF logic in a given vocabulary L and U a finite set of
variables which contains the free variables of . We expand the vocabulary
Lof ptoL* = LU{fy : 4 is asubformula of ¢}. The skolemized form or
skolemization of ¢ with variables in U is defined by the following clauses, as
detailed in [6]:

Sky (1) = 1, for 1) an atomic subformula of ¢ or its negation
ku (1 0 8) = Sky(¥) o Sky(8), for o € {V, A}
Sky((Vz/W)y) = Ve Skyygay (¥)

Sky((3x/W)) = Subst(Skyugay(¥), T, f3:(Y1, - Yn))

where y1, ..., ypenumerate all the variables in U — W. We notice thatif W = &
the last clause becomes

SkU((H‘T)w) = SUbSt(SkUU{z}(w)v €, fﬂx(yly X3} yn))

where y1, ..., ypenumerate all the variables in U. That is, we recover the notion
of skolemization for the standard quantifiers. We abbreviate Sk () by Sk(y).
An interpretation of f3,(y1, ..., yy) is called a Skolem function.

U
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Example. We skolemize the sentence ¢

Vava' Fy/{2' )3y /{z, v} Q(x, 2’ y, ).

We denote (3y'/{z,y})Q(z,2',y,y") by ¥. Sk(yp) is obtained through the
following steps:

= Qz,2',y.y)

Q(z, 2"y, fy(z"))

Q(z, ", fy(x), fy (2))
Va'Q(z, 2, fy( x), fy (')
= VavVa'Q(x, 2, fy(z ) Sy ().

Skiza yy} (@2, 2.y, 9))

Skig a4y (1)
Skiaary((Fy/{z'})9)
)¥)
)

Skzy (Y2’ (Jy/{a'})y
Skg(Vava' (Jy/{x'})

The original vocabulary L receives an interpretation through an L-structure
M in the usual way. We are now ready for the truth-definition.

Definition 1. Let ¢ be an L-sentence of IF logic and M an L-structure. We
say that ¢ is true in M, Ml E™ ¢, if and only if there exist functions g1, ..., g,
of appropriate arity in M to be the interpretations of the new function symbols
fays ey fo, in Sk(p) such that

M, g1, ..., gn E SEk(p).

3. Falsity in IF logic

In order to deal with falsity, we shall define another translation procedure,
Kry(p) (we continue to follow [6]):

=

ry () = —p, for 1) an atomic subformula or its negation
ro( Vv 0) = Kry() A Kry(0),

Kry(wA0) = Kry(y) Vv Kry(0)

(

(

=

=

Jx/W)Y) = Ve Kryya (¥)
Va /W) =Subst(Kryugey(¥), @, fou (Y1, s Ym)

where y1, ..., Y, are all the variables in U — W. We call the value of interpre-
tation of fy,(y1, ..., ym)) a Kreisel counter-example.

TU(
KTU(
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By analogy with the truth definition, we stipulate that an IF sentence ¢ is
false in a structure M, Ml F~ ¢, if and only if there exist functions Ay, ..., hy,
of appropriate arity in M to be the interpretations of the new function symbols
fays ey fo,,in K7(¢) such that

M, A1, ..., by E Kr(p).

4. Indeterminacy and signaling

Here is an example of an IF sentence which is neither true nor false in any
structure M which contains at least two elements:

¢ =Vz(Jy/{z})z =y.

It may be checked that Sk(p) = Yz = ¢, where c is a new O-place function
(individual constant); and Kr(p) = Vy—d = y. Then by the definitions above,
we have:

M E* ¢ iff there is a € M such that M, a F Vzx = ¢

M E~ g iff there is b € M such that M[; b F Vy—d = y.

As the structure M contains at least two elements, none of the assertions on
the right side is true. Thus we have both Ml ¥+ ¢ and Ml £~ .

It is interesting to compare the previous example with 1)

VoIz(Jy/{z})r =y

whose skolemization is
Vrx = g(f()).

It may be checked that this sentence is a logical truth. Unlike in ordinary first-
order logic, the example shows that inserting a dummy existential quantifier in
an IF sentence changes its semantical value. Hodges has discussed this example
in [3]], and the phenomenon of signaling in IF logic.

5. Expressive power

Example of sentences of the form

Vava' Fy/{2'}) 3y /{z, y})Q(x, 2, y, )
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which are mentioned by Tao and which are not first-order definable are not
difficult to find. We prefer to use a different example, which will turn up to
be useful for other purposes too. There is an IF sentence which expresses the
(Dedekind) infinity of the universe M. M is said to be (Dedekind) infinite iff
there is a function h : M — M which is an injection and in addition there is
an element in M which is not the image under / of any element of M. The
sentence we look for is ©;,

Fuwvz(3y/{w})(Fz/{w, 2})(z =2z Aw # y).
The Skolem form of (;y, 1 is

Va(r = g(f(2)) Ne# f(z)).

It can be checked that ;¢ is true in a model iff the function f is an injection
which range is not the entire universe. On the other side if M is finite, it may be
shown that we have both Ml ¥ ;,, ¢ and ML~ ;,,r. Thus we have produced
another example of an indeterminate IF sentence.

6. Strategic games

Consider our earlier IF sentence ¢ = Va(3y/{x})z = y and a finite model
M. The set S5 of Skolem functions of Eloise in this game reduces to the set of
all individuals in M which can be the values of the new function symbols in
Sk(yp) = Vzx = c. In this case S5 = M. And the set Sy of Kreisel counter-
examples of Abelard in this game reduces to the set of all individuals in M
which can be the values of the new function symbols in K7 (¢) = Yy—d = y.
Thus Sy = M. We can now formulate a two-player strategic game in which
we let S5 be the set of (pure) strategies of Eloise, and Sy the set of (pure)
strategies of Abelard. The two players choose simultaneously s € S5 and
t € Sy, respectively. The payoff of the outcome is determined in a very simple
way: if s and ¢ satisfy the equation x = y, Eloise wins (1 euro). Otherwise
Abelard wins. Here is the complete matrix of the game for the case in which
S3=1{1,2,3}=5y = M:
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The rows represent the strategies of Eloise and the columns the strategies of
Abelard. In (m,n), m € {0,1} is the payoff of Eloise, i.e. ug(m,n) = m,
and n is the payoff for Abelard for the corresponding pair of strategies.

It is interesting to compare this game to the one associated with the IF
sentence ¢ = Vx(Jy/{z})r # yand M = {1,2,3}:

1 2 3
1](0,1) [ (1,0)] (1,0)

(1,0) | (0,1) | (1,0)
3] (1,0) ] (1,0) [ (0,1)

We shall call these games strategic IF games, and denote them by I'(M, ¢) =
(53, Sy, uz, uy). Obviously these games are

» win-lose: Every game has exactly two payofts, O and 1.
* 1 sum: Forevery s € Sgandt € Sy we have: ug(s,t) + uy(s,t) = 1.

Let I' = (S3,Sy,us3,uy) be a finite strategic IF game. For s* € S5 and
t* € Sy, the pair (s*,t*) is an equilibrium in I iff the following two conditions
are jointly satisfied:

(i) uz(s*,t*) > uz(s, 7t*) for every strategy s in S3. In other words

uz(s*,t*) = mazxsus(s,t”)

(i) wy(s*,t*) > wy(s*,t) for every strategy ¢ in Sy. In other words

uy(s*,t%) = mazyuy(s™, t).

We can check that in our earlier strategic IF games I'(M, Vx(Jy/{z})z = y)
and I'(M, Vz(3y/{z})x # y) where Ml = {1, 2, 3}, there are no equilibria.
Obviously this is a reflection of the fact that these games are undetermined.

6.1. Mixed strategies equilibria in IF games

There is an equilibrium in every IF game if, instead of pure strategies, we switch
to mixed strategies. Let I' = (S5, Sy, uz, uy) be a finite IF strategic game. A
mixed strategy v for player ¢ in this strategic game is a probability distribution
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over S, that is, a function v : S; — [0,1] such that > o v(7) = 1. v is
uniform over S} C S; if it assigns equal probability to all strategies in S, and
zero probability to all the strategies in S; — S;. Obviously we can simulate
a pure strategy s with a mixed strategy v such that v assigns s probability 1.
Given a mixed strategy u for player 3 and a mixed strategy v for player V, the
expected utility for player ¢ is given by:

Uiv) = 37 uls)vuils. ).

sES3 teESY

When s € S5 and v is a mixed strategy for player V, we let

Ui(s,v) = > v(t)u(s,t).

teSy

Similarly if ¢ € Sy and p is a mixed strategy for player 3, we let

Ui t) = 3 als)uils,b).

sES3

Von Neumann’s well known Minimax Theorem shows that every finite,
constant sum, two player game has an equilibrium in mixed strategies. It is also
well known that every two equilibria in such a game returns the same expected
utility to the two players. Thus we can talk about the expected utility returned
to player 3 by an IF strategic game. This justifies the next definition:

Definition 2. Let ¢ be an IF sentence and M a finite model. When 0 < e <1
we define: M F£? ¢ iff the expected utility returned to player 3 by the strategic
game I'(M], @) is .

The above definition gives us the (probabilistic) value of an IF sentence ¢ on
a given finite model M. It can be shown that this interpretation is a conservative
interpretation of the earlier interpretation, in the following sense.

Proposition 1. For every IF sentence o and finite model M we have: M ET ¢
ifFM EY? p; and MLE™ @ iff MEG! .

The next proposition is often useful for checking that a pair of mixed strategies
is an equilibrium.
Proposition 2. Let p*be a is a mixed strategy for player 3 and v*is a mixed

strategy for player ¥ in the strategic IF game T. The pair (p*,v*) is an
equilibrium in T if and only if the following conditions hold:
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*

for every o € S3 in the support of p*;

*

for every o € S5 outside the support of ©*;

*

w,T

Recall our earlier examples I'(M, Va(Jy /{x})x = y) and ' (M, Vz(Jy /{x})x #
y) where Ml = {1,2,3}. In both cases the uniform strategies p*(1) =

1 1
w(2) = p*3) = 3 and v*(1) = v*(2) = v*(3) = 3 form an equilib-

( ) = Us(o,v")

2. Uy(p*,v*) = Uy(u*, ) for every T € Sy in the support of v*;
( ) = Us(o,v7)
) = Uy(p*, 7)

for every T € Sy outside the support of V*.

1 2
rium. The value of the first game is 3 and that of the second game is 3 Thus
M l=eq Vo (Jy/{z})r =y and M hqux(Hy/{x})x # .

A more complex argument shows that for M a finite model with n elements
we have M =57, ;7. Thus when n grows to infinity the value of ¢;;,

approaches 1, asnexpected.

Notes

IF logic has been introduced by Hintikka and Sandu in [4]. In [3], Hintikka
discusses the foundational role of IF logic in the philosophy of mathematics.
The basic model theoretical properties of IF logic from a game-theoretical
perspective are described by Mann, Sandu, and Sevenster in [6]. In that
work the probababilistic interpretation of IF logic, which is the source of our
exposition in section 6, is thoroughly studied. The idea to use von Neumann’s
Minimax Theorem in the context of partially ordered quantifiers is due to Ajtai
as mentioned in [1l]. The first systematic investigation of strategic IF games
is provided by [7]. Recently, an alternative approach to IF logic has been
developed which replaces the independence of quantifiers by the dependence
between terms. In this new setting, (5) is rendered by

Vava' Ty (= (z,y)A = (@', y) A Q(z, 2, y, ).

The intended meaning of ' = (z,y)’ is: y functionally depends on x. The
semantical interpretation of this language is based on Hodges’ compositional
interpretation, introduced in [5]. A self-contained introduction to this logic is

(9.
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Abstract: The paper discusses how one can try to analyze computations, and maybe
computational problems from the point of view of information evolution. The con-
siderations presented here are very preliminary. The long-standing goal is twofold:
on the one hand, to find other vision of computations that may help to design and
analyze algorithms, and on the other hand, to understand what is realistic computation
and what is real practical problem. The concepts of modern computer science, that
came from classical mathematics of pre-computer era, are overgeneralized, and for
this reason are often misleading and counter-productive from the point of view of ap-
plications. The present text discusses mainly what classical notions of entropy might
give for analysis of computations. In order to better understand the problem, a philo-
sophical discussion of the essence and relation of knowledge/information/uncertainty
in algorithmic processes might be useful.

Keywords: computation, problem, partition, entropy, metric.

1. Introduction

The goal of this paper is to discuss along what lines one can look for ways
to describe the quantity of information transformed by computations. This
may permit to better understand the computations themselves and, possibly,
what is practical computation and what is practical algorithmic problem. The
considerations presented here are very preliminary, more of philosophical than
of mathematical flavor. We consider rather straightforward geometrical and
information ideas that come to mind. Usually they are not sufficient taken

© The Author(s) and College Publications 2017
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directly. Making explicit the obstacles may help to devise more productive
approaches]]

In Introduction we give some arguments that illustrate that the mathematical
formulations of computational problems we usually consider, are overgeneral-
ized, and sometimes this hinders the development of practical algorithms or
the understanding why certain algorithms for theoretically hard problems work
well in practice. In Section [2] we outline some approaches to measuring infor-
mation in computations, and discuss their weak and strong points. Section [3]is
about the structure of problems for which we can presumably develop measures
of information along the lines described in the previous section. It contains
also a short discussion of the role of linguistic considerations in describing
practical problems.

Why traditional mathematical settings look too general for practical computer
science? And when it is inevitable and when maybe not?

Most notions used in theoretical computer science either come from math-
ematics of pre-computer era or are developed along mathematical lines of
that epoch. From mathematics of pre-computer era the computational theory
borrows logics, logical style algorithms (lambda-calculus, recursive function,
Turing machine), general deductive systems (grammars), Boolean functions,
graphs. More specific notions like finite automata, Boolean circuits, random
access machines etc., though motivated by modeling of computations, are of
traditional mathematical flavor. All these concepts played and continue to
play fundamental role in theoretical computer science, however other, more
adequate concepts are clearly needed.

I can illustrate this thesis by Boolean functions and their realization by
circuits. Almost all Boolean functions of n variables have exponential circuit
complexity (2"/n) [9], and there is an algorithmic method to find such an
optimal realization for a given ‘random’ function [6]. But it is clear that even
for n = 64, that is not so big from practical viewpoint, one cannot construct
a circuit with 2" /n gates. So one can state that almost all Boolean functions
will never appear in applications. The notion of Boolean function is of evident
practical value, but not in its generality. All this does not say that the general
notion and the mentioned result on the complexity of realization are useless
in theory (moreover, they are known to be useful). But an optimal circuit
construction for almost all Boolean functions is not of great value for practical

ISome of them were developed later to become quite mathematical.



Towards Analysis of Information Structure of Computations 279

Boolean functions.

Consider another example. We know that the worst-case complexity of the
decidability of the theory of real addition is exponential [2]]. This theory is a
set of valid closed formulas that are constructed from linear inequalities with
integer coefficients with the help of logical connectives, including quantifiers
over real numbers (in fact, only rational numbers are representable by such
formulas, as the only admissible constants are integers). In particular, one
can express in this theory the existence of a solution of a system of linear
inequalities, and various parametric versions of this problem, e.g., whether
such a solution exists for any value of some variable in some interval. The
complexity of recognition of validity of the formulas grows up with the number
of quantifier alternations.

The mentioned exponential lower bound on the computational complexity
of the theory of real addition is proven along the following lines. Denote
B=,{0,1} and denote by B* the set of all strings over B. Under some
technical constraints for any algorithm f from B* to B, whose complexity is
bounded by some exponential function ¢, and for any its input € B* one can
construct a formula ®( f, ) of sufficiently small size (polynomial in the size of
f and ) that is valid if and only if f(x) = 0.

Within a reasonable algorithmic framework (e.g., for some random access
machines, like LRAM from [[10]) one can construct a predicate f : B* — B
whose upper bound on computational complexity is ¢, and any algorithm that
computes this predicate has lower bound 6 - ¢, for some 0 < 6 < 1. This f is
a diagonal algorithm, I do not know other kind of algorithms for this context.
Such a diagonal algorithms works like follows. Assume that the complexity of
computing ¢(|z|), where |z| is the length of = € B*, is bounded by its value
©(|x]). The algorithm f computes o (|z|) and makes roughly ¢(|z|) steps of
simulation of algorithm with the code x applied to input x. If the process ends
within less that ¢(|x|) steps then f outputs the value different from the value
computed by the algorithm with the code z, otherwise it outputs say, O (in the
latter case the value is not important).

Thus, the recognition of the validity of formulas ®(f,x) has a high com-
plexity. But they are not formulas that appear in practice. Moreover, practical
formulas, that may have a good amount of quantifier alternations, are seman-
tically much simpler, they never speak about diagonal algorithms, though may
speak about practical algorithms, e.g., about execution and properties of hard
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real-time controllers.

The just presented argument is valid for all negative complexity results (un-
decidability, high lower bounds, relative hardness) with the existing proofs.
And here one arrives at another ‘incoherence’ between theory and practice that
can be illustrated by the TAUT problem, i.e., by the problem of recognition of
the validity of propositional formulas. This problem is considered as relatively
hard (more precisely, coNP-complete) in theory, but existing algorithms solve
very efliciently practical instances of this problem, and the problem is consid-
ered as an easy one by people working in applications. This is not the only
example.

There are similar examples of another flavor, like the practical efficiency
of linear programming algorithms. Here one finds mathematically interesting
results of their average behavior. However, traditional evaluation of the average
or Teng-Spielman smooth analysis [13] deal with sets of inputs almost none
of which appears in practice. If one accepts Kolmorogov algorithmic vision
of randomness, i.e., a string (or other combinatorial construct) is random if its
Kolmogorov complexity is close to the maximal value, then one gets another
argument that random constructs cannot appear from physical or human activity.

Many people believe that physical processes may produce truly random
data. Many years ago, it was somewhere in the 70th, G. M. Adelson-Velsky[
told me that M. M. Bongard?| showed, using not very complicated learnability
algorithm, that Geiger counter data, that were considered as truly random, can
be predicted with a probability definitely higher that 1/2. Who else analyzed
physical ‘random data’ in this way? Notice that standard statistical tests that
are used to prove randomness can be easily fooled by simple deterministic
sequences, e.g., Champernowne’s sequence. Happily, in practice ‘sufficiently
random’ sequences suffice.

The practical inputs are always described in a natural language whose con-
structs are numerous but incomparably less numerous than arbitrary constructs,
so they are not so random.

One may refer to the ideology of modern mathematics. Modern mathematics
does not study arbitrary functions, nor arbitrary continuous functions, nor even
arbitrary smooth functions. It studies particular, often rather smooth, manifolds
on which often, though not always, acts a group with some properties modeling

2Georgy Maximovich Adelson-Velsky (1922-2014) was a well-known Soviet and Israeli
mathematician and computer scientist.
3Mikhail Moiseevich Bongard (1924—-1971) was a well-known Soviet computer scientist.
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properties inspired by applications in mind.

It is not so evident how to find a structure to study in algorithmic problems,
but it is much simpler to see a structure in computations, namely, in sets of runs
(executions). One can try to find geometry in these sets. An intuitive sentiment
is that any algorithm transforms information, so we can try to find geometry in
computations using this or that concept of information.

It is improbable that one approach will work for all types of algorithms that
appear in practice. The frameworks we use to study different types of algo-
rithms are different. For example, reactive real-time systems are studied not as
data base queries, computer algebra algorithms are studied not in the same way
as combinatorial algorithms etc. In this paper I try to look at off-line ‘combi-
natorial’ algorithms without defining this class rigorously. Roughly speaking
such an algorithm processes a finite ‘combinatorial’ input accessible from the
very beginning, where each bit is ‘visible’ except maybe some integers that are
treated as abstract atoms or ‘short’ integers with addition and comparison. Ex-
amples are string matching, binary convolution, TAUT, shortest path in graphs
with integer weights etc.

But algorithms of this vaguely defined class may be very different from the
point of view of their analysis. For example, take diagonal algorithms and com-
pare such an algorithm with an algorithm like just mentioned above. One can
see that runs of diagonal algorithms are highly diverse, within the same length
of inputs we may see a run that corresponds to an execution of a string-matching
algorithm, another run that correspond to solving a linear system etc. In the
algorithms mentioned above the runs are more or less ‘similar’. My first idea
was to say that this distinguishes practical algorithms from non-practical ones.
However, E. Asarin immediately drew my attention to interpreters that are quite
practical and whose sets of runs are of the same nature that the set of runs of
diagonal algorithms. It is interesting that compilers (to which N. Dershowitz
drew my attention in the context of a discussion on practical and impractical al-
gorithms some time ago) are in the same class that the mentioned combinatorial
algorithms because they do not execute the programs that they transform. But
interpreters are not in the same class as the combinatorial algorithms that are
under study here. We do not demand that an interpreter diminish the compu-
tational complexity of the interpreted algorithm. And the interpretation itself
slows down the interpreted algorithm by a small multiplicative constant that
we can try to diminish. In some way, the output of the interpreter is a trace



282 A. Slissenko

of the interpreted algorithm, so their diversity is intrinsic, and the length of
their outputs is compared with their time complexity. We consider algorithms
whose outputs are ‘much shorter’ than their time complexity.

2. How to evaluate similarity of computations?

Some syntactic precisions on the representation of runs of algorithms are
needed. Suppose that F' is an algorithm of bounded computational complexity
that has as its inputs some structures (strings, graphs etc.) and whose outputs
are also some structures.

By the size of an input we mean not necessarily the length of its bit code but
some value that is more intuitive and ‘not far’ from its bit size. E.g., the number
of vertices for a weighted graph, the length of vectors in binary convolution
etc. In any case the bit size is polynomially bounded by our size. Thus, for
a weighted graph we assume that weights are integers whose size is of the
order of logarithm of the number of vertices if the weights are treated as binary
numbers or whose size is O(1) if they are treated abstractly.

We mention two very simple examples, namely palindrome recognition and
sum of elements of a string over B.

Assume that for the structures under consideration a reasonable notion of
size is defined, and the set of all inputs of size n, that are in the domain of F/,
is denoted by dm,,(F') or dm if F' and n are clear from the context. The set
of corresponding values of F' is denoted rn,,(F') or rn. We assume that n is
a part of inputs. Below n is fixed and often omitted in the notations.

We look at algorithms from the viewpoint of logic. Though in programming,
as well as in logic, any program may be seen as an abstract state machine, there
is no terminology that is commonly accepted in logic and programming. For
example, what is called variable in programming is not variable in logic; from
the point of view of logic it is a function without arguments but that may have
different values during the execution of the program. In order to avoid such
discrepancy we use logical terminology that was developed by Yu. Gurevich for
his Abstract State Machines [3], and may be applicable to any kind of programs.
Our framework is not that of Yu. Gurevich machines, we deal with executions
of low-level programs seen as some kind of abstract state machines.

An algorithm computes the values of outputs using pre-interpreted constants
like integers, rational numbers, Boolean values, characters of a fixed alphabet,
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and pre-interpreted functions like addition, order relations over numbers and
other values, Boolean operations. These functions are static, i.e., they do
not change during the executions of F'. The other functions are abstract and
dynamic. The inputs are given by the values of functions (that constitute
the respective structure) that F' can only read; they are external (as well as
pre-interpreted functions). The functions that can be changed by F' are its
internal functions, they are subdivided into output functions and proper internal
functions. We assume for simplicity that the output functions are updated only
once. Dynamic functions may have arguments, like, e.g., arrays, and we limit
ourselves to such functions that have one natural argument. When the argument
iin such a function f is fixed, this f(7) can be considered as nullary function, i.e.
as a function without arguments. All these functions constitute a vocabulary
of the algorithm.

We consider computations only for inputs from a finite set dm,, (F'). These
computations are represented as sets of traces that we describe below. We can
treat such sets abstractly without precise notion of algorithm. However, for
better intuitive vision, we describe a simple algorithmic language that gives a
general notion of algorithm and that suffices for our examples.

Term is defined as usual, and without loss of generality, we consider non
nested terms, i.e., terms whose arguments are only variables if any. Guard is
a literal. Update (assignment) is an expression g := 6, where g is an internal
function, and 6 is a term. Constructors of a program (algorithm) are: update,
sequential composition (denoted ;), branching if guard then P else P’ ,
where P and P’ are programs, goto, halt. As delimiters we use brackets.

A state is an interpretation of the vocabulary of the algorithm. A state is
changed by updates in the evident way. The initial state is common for all
inputs, we assume that the initial value of any internal function f is symbol
j that represents undefined, is never used in updates, and that f~1(§) = 0.
A run is usually defined as a sequence of states, but we use an equivalent
representation of executions as traces.

Given an input X € dm,(F) a trace tr(X) is constructed as follows
according to the executed operators: update is written as it is in the program; in
the case of conditional branching if guard then-else we put in the trace either
guard or its negation depending on what is true in this trace. For simplicity the
initial state and halt are not explicitly mentioned in traces, neither goto. Thus,
atrace is a sequence of updates and guards that are called events. The tth event
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in a trace tr(X) is denoted tr (X, t). These events are symbolic. An execution
gives values to the internal functions, and thus, an interpretation of any event.

Denote by t},(X) the time complexity of F' for input X, and by tp(n)
the maximum of these values, i.e., the worst-case time complexity of F' over
dm,(F).

For an input X € dm,,(F') and a time instant ¢, 1 < ¢ < t*(X), we denote
by f[X,t] the value of a internal function f in ¢r(X) at ¢, the value is defined
recursively together with the recursive definition of trace given just above. If
f is not undated at ¢ then f[X,t] = f[X,¢t — 1]. If tr(X,t) is of the form
f = 9(77) then f[X7 t] = Q(W[th - 1])[Xat - 1]'

Consider two examples.

Palindrome recognition. Inputs are non empty strings of length n over an
alphabet A with o« > 2 characters. For simplicity assume that 7 is even and set
v=4 5. We denote the input by w, and the character in the ith position by w(3).
We take a straightforward algorithm ¢ that compares characters starting from
the ends and going to the middle of the input. We use % to mark comments,
and we omit halt that is evident.
Algorithm ¢:
% 14 is a loop counter,  is the output (0 means non palindrome, 1 palindrome)
1: 1:=0;
2 ifi<vthen (i=i+1;

if w(i) = w(n — i + 1) then goto 2 else r:=0)
else r:=1

Algorithm ¢ has two types of traces (one with output 0 and the other with
output 1):

i:=0i<vyi=i+lLwl)=wh—i+1),...,i<v,i:=1+1,
wi) =wn—i+1),i<v,i=i+1w()#wn—i+1),r=0

i:=0i<vyi=i+1lLwi)=wh—i+1),....,i<v,i:=i+1,
w(i) =wn—1+1),i>rv, =1

A trace of the first type may have different lengths starting from 5, but the
length of the trace of the second type is always the same.

For a string aabaaa with a # b, if in the respective trace we replace the
internal functions, as well as n, by their values we can write:

1:=0,0<3,i: =04+ 1L, w(l) =w(6),l <3,i:=1+1,w(2) =w(5b),
2<3,i:=2+1,w(3) #w(4), =0
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Sum modulo 2 of bits of a string. Inputs are strings of the set B".
Algorithm o:
% x is input, r is output, ¢ is a loop counter, s is an intermediate value

1: 1:=0;5:=0; %olnitialization
2: ifi <ntheni:=i+1;s:= s+ x(i); goto 2
3: elser := s % case 1 > n

All traces of o are ’symbolically’ the same (the algorithm is oblivious), for
clarity we put in an event the value of ¢ acquired before this event:
i:=0,5:=0,0<n,i:=0+1, s:=s+z(l), 1 <n, i:=2,
s:=s+xz(2),....,n—1<n,i:=n, s:=s+z(n),n>n, r:=s
Remark. For Boolean circuits we can also produce traces that are even simpler,
as a Boolean circuit is a non branching oblivious algorithm. Such a trace
consists of updates, each one being an application of the Boolean function
attributed to a vertex of the circuit, to the values attributed to its predecessors.

Denote by T'r,, the set of all traces for inputs from dm,,. The length |t (X)|
of a trace tr(X), X € dm,, is the number of occurrences of events in it, i.e.,
the time complexity t7,(X).

2.1. A syntactic similarity of traces

A straightforward way to compare two traces is the following one. We look
in tr(X) and tr(Y") for a longest common subsequence (we tacitly assume
that some equivalence between events is defined), and take as a measure of
similarity the size of the rest. More precisely, if S is the longest common
subsequence then we take as measure the value [tr(X)| + [tr(Y)| — 2|5,
where | S| is the size (the number of elements) of a sequence S. This measure
is something like the size of symmetric difference of two sequences.

We can go further, and to take into account only causal order in what concerns
the order of events, and to permit a renaming of proper internal functions and
their values. The causal order is defined as follows. If the function updated
or used (in the case of guard verification) in an event e depends on a function
updated earlier in an event €’ then €’ causally precedes e. Taking a transitive
closure of this relation we get causal order between events in a given trace. This
generalization is too technical (details can be found in [12]), and as I cannot
give examples of realistic applications, it is just mentioned as a theoretical
possibility.
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The measure introduced above gives a pseudo-metric (it is like metric except
that two different traces may have zero distance; in our case the zero distance
relation is an equivalence) over traces. As the trace space T'r, is clearly
compact, this metric permits to define epsilon-entropy [5] on it. This entropy
is defined as follows. For a given € (in our case it is a natural number) take
an e-net of minimal size such that the -balls centered at the points of the net
cover all the space. Then log s, where s is the size of this net, is the e-entropy.
It gives the size complexity of the e-approximation of the space, or to say it
differently, how much information one needs to have, in order to describe an
element of the space with accuracy €.

Consider our examples.

Trace space of ¢. We define similarity as follows (it is a rather general way to
define it). First, in the right-hand side of each update f := 6 replace all proper
internal functions of # by their values. In guards replace all internal functions
by their values. We get as transformed events the expressions: ¢ := m,
where m € Nandm = (...(04+ 1)+ 1) +---+1),m < v, m > v,
w(m) =w(n —m+1), w(m) #wn—m+1),r =0,r = 1. As similarity
(we refer to it as ‘weak similarity’) we take the syntactic equality of these
transformed events.

With this similarity we have (v + 1) different (classes of similar) traces (v
classes with » = 0 at the end, and 1 class with = 1): denote by P, traces with
(k — 1) equalities and one inequality in the k& comparison, 1 < k < v, and by
P the only trace with » = 1. The distance between Py and P is 3|k — [|, and
between Py, and P is 3(v — k) + 2. If we take ¢ = 2 then e-net should include
all the traces but, however, it is of size (logn + O (1)). If we take € = 3p,
p € N, then as an e-net we can take each pth trace ordered according to their
lengths; hence, 3p-entropy is of size [%} = [%1 (maybe plus 1).

The situation changes if we take stronger similarity. We say that w(m) =
w(n—m+1)andw(m’) = w(n—m'+1) are similar if m = m/ (as before) and
the respective values of inputs are the same w(m) = w(m') (for # we demand
also w(n — m+ 1) = w(n —m’ + 1)). In this case the trace space becomes
of exponential size. We illustrate this kind of similarity for algorithm o.

Trace space of 0. We define similarity of event of the form ¢ := ¢ + 1 and of
the form i < n as in the previous case: values of (i + 1) in similar events of the
form 7 := 7 4+ 1 and the value of ¢ in similar events of the form ¢ < n should
be equal. Two events of the form s := s + x(¢) are similar if the values of i,
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as well as of the acquired values of s, are equal. Any string from B” may be a
string of consecutive values s starting from s := 0 + x(1) that equals to x(1).
Thus the set of traces of o with this similarity and our metric divided by 2 is
isometric to the Boolean cube B™ with Hamming metric. This space is studied
in the coding theory, and I cannot say more than can be found there.

Unfortunately, the metric spaces in the examples above do not say much
about the advancement of the algorithm towards the result. If we take spaces of
traces up to some time instant and their dynamics with growing time, it does not
help much neither. Moreover, the size of the space T'r, is bounded by |dm,|,
and does not depend on the complexity of F', and this is also a shortcoming of
this approach.

2.2. Remark on Kolmogorov complexity approach

Why not to measure distance between traces on the basis of Kolmogorov
complexity? This question was put by some of my colleagues.

A direct application of Kolmorogov algorithmic entropy [4] to measure sim-
ilarity of traces does not give results corresponding to our intuition. Indeed, in
[4] Kolmogorov defines entropy as conditional complexity K («|/3). Similarity
of structures « and 5 may be measured as K(«, 5) = K («|f) + K (/|«). This
is not a metric, strictly speaking, however, we call this function R-distance as
it has a flavor of intuitive distance-like measure.

Denoting by |F'| and | X | binary lengths of respectively F' and X we get

K(tr(X)/tr(Y)) < |F| + K(X/Y) + O(1) < |F| + |X| + O(1).

This formula follows from an observation that X and F’ are sufficient to calculate
the trace tr(X). Thus, whatever be an algorithm F' and whatever be its
computational complexity, the R-distance between traces from T'r, is not
greater than O(|.X|) that we assume, for simplicity, to be O(n). On the other
hand, given a minimal length program G that computes tr(X) from ¢r(Y)
(thus, |G| = K (tr(X)/tr(Y))) one can get X from Y as follows: from Y
one computes tr(Y) using F' (whose size is a constant), then using G one
computes tr(X) and finally extracts X from ¢r(X ) with the help of a simple
fixed program, say E, whose length is a constant (without loss of generality,
we can assume that the input is reproduced at the beginning of each trace). All
this gives (we put ‘absolute’ constants |F'|, | E| in the last O(1))

K(X|Y) < |F| + |G| + |E|+ 0(1) < K(tr(X)/tr(Y)) + O(L).

We assume that the cardinality of binary codes of dm.,, (F') is at least 2" (hence,
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almost all inputs have Kolmogorov complexity n — o(n)), then the chain rule
for Kolmogorov complexity (e.g., see [4]) for almost all X, Y gives

KX|Y)=K(X,Y)-K()-0(logK(X,Y)) >n—clogn

for some constant ¢ > 0.
Together with the previous formula this gives a lower bound for
K (tr(X)/tr(Y)) that shows that R-distance is almost always of order of
n that can hardly be seem as satisfactory for evaluation of similarity of traces
from T'r,,.

What is said above, does not exclude that other types of Kolmogorov style
complexity could work better (e.g., a more general notion of entropy [[11] is
based on inference complexity.). In particular, resource bounded complexity
approaches may prove to be productive if we find a ‘good’ description of
information extracted by algorithm as datum (structure); however, this remains
an open question.

2.3. Similarity via entropy of partitions

In this subsection we outline another approach to measure similarity of traces.
It refers to the classical entropy of partitions. We use partitions of the inputs.
For this reason a probabilistic measure over the inputs is needed. Such a
measure is a technical means, so there is no evident way to introduce it. We do
it taking into account an intuition related to the evolution of the ‘knowledge’ of
the algorithm. When an algorithm F' starts its work it ‘knows’ nothing about
its output. So all values from rn,, are equiprobable.

Let M = |rn,(F)|. Asany of these M values is equiprobable (imagine that
an input is given by an adversary who plays against F'), we set P,,(F~*(Y)) =

i for all Y € rn,(F), and inside F~1(Y") the measure is uniform as the

algorithm a priori has no preferences. In particular, if F'is a 2-valued function,
say rn(F) = B, then its domain is partitioned into two sets F'~1(0) and
F~1(1) with the same measure 1/2 of each set. E.g., for palindromes we the

measure of a palindrome is Ziy and that of a non palindrome is %a%

There is nothing random in the situation we consider, we wish only to mgdzzl
the evolution of the knowledge of an algorithm during its work. So this way to
introduce a measure may be not the best one.

Suppose that f is updated at ¢ and f[X,¢] = v. How to describe the

knowledge acquired by F' via this event at ¢ that gives v = f[X,¢]? This
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value v may be acquired by f in different traces, even several times in the
same trace, and at different time instants. The traces are not ‘synchronized’
in time, however, we can compare events, as in subsection @ due to this or
that similarity relation, that is determined by our goal and our vision of the
situation. Notice that formally speaking similarity is a relation between pairs
(X,t), where X € dm(F)and 1 <t < t},(X). Similarity can be defined
not only along the lines described in subsection 2.1. One may think about
quite different ways. Just to give an idea, one can, for example, consider as
similar events corresponding to the kth execution of the same command of the
program with or without demanding equality of these or that values. Or one
can permit renaming of internal function as it was mentioned at the beginning
of subsection 2.1.

Suppose that some similarity relation ~ is fixed.

To compare traces we attribute to each event of a trace a partition of inputs.
Thus, to each trace there will be attributed a sequence of partitions. Taking
into account that the set of inputs is a space with probabilistic measure we
can define a distance between partitions and furthermore a distance between
sequences or sets of partitions.

For any input X and an instant ¢, 1 < ¢ < ¢*(X), denote by sm(X, ) all
the inputs X’ such that (X,¢) ~ (X', ') for some ¢'. Clearly, X € sm(X,1t).
Denote by pt(X,t) the partition of dm,, into sm(X,t) and its complement
that we denote sm (X, t)°=, dm,, \ sm(X,t).

Thus, each input X determines a sequence (pt(X,t)); oraset {pt(X,t)}: of
partitions of dm,,(F'). These constructions, namely sequence or set, provide
different opportunities for further analysis, e.g., we can define distance between
metric spaces, e.g., see [} ch. 7].

For measurable partitions of a probabilistic space P = (€2, %, P) one can
define entropy (no particular technical constraints are needed in our case of
finite sets), see [&]] or books like [[7]].

Let A and B be measurable partitions of P (in our situation all the sets are
measurable).

Entropy H(.A) and conditional entropy H (.A/B) are defined as

=—> P(A)logP(A), H(A/B)=-)>_ P(ANB)I M.
P(B)
AcA BeB,AcA

ey
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The conditional entropy permits to introduce Rokhlin metric [8] between par-
titions:

p(A,B)=H(A/B)+ H(B/A) =2H(AV B) — H(A) — H(B),

(here A V B is common refinement of partitions A and B, that is the partition
formed by all pairwise intersection of sets of .A and B).

There are other ways to introduce distance between partitions, e.g., see [7,
4.4], so one can take or invent maybe more productive metrics or entropy-like
measures.

Unfortunately, the combinatorial difficulties of estimating such distancies are
discouraging, they do not justify what we get form them. We illustrate this for
the palindrome recognition algorithm .

Denote w=(1..k)=4 {w : \j<;<p w(i) = w(n —i+ 1)} (the set of words
whose prefix of length k permits to extend it to a palindrome), denote by
w7 (1..k) the complement of w=(1..k); in particular, w= (k..k) = {w : w(k) =
w(n—k+1)}and w? (k..k) = {w : w(k) # w(n—k+1)}. Probabilities are
easy to calculate (we use them in the next subsection), here 1 < k < m < v:

au—m(am—k _ 1)

Pw=(1.k) Nnw” (k+1..m)) = OTEEI 2)
al/—k? _ O[V_k Oék _

(We omit technical details, the role of the formulas is illustrative.)
However, when we try to calculate the distance between partitions, take for
example p(7=(k),7=(m)), where 7= (s) = (w=(1..s),w? (1..s)), we arrive

at a formula that is a sum of several expressions like (% + %) log % +

i ), that is hard to evaluate. And what is worse the result is not very

2(av—1)
instructive, e.g.,

0.9 if a=2
p(r=(1),7=(v)) =< 0.67 if a=3
0.6 if a=4

Technical combinatorial difficulties do not discard the idea of geometry of
spaces of events or traces, the point is to find a geometry and its interpretation
that really deepens our understanding of algorithms and problems.
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2.4. The question of information convergence

Now we discuss how similarity of events may serve to evaluate the rate of
convergence of a given algorithm towards the result.

Among the first ideas that come to mind is the following one. The result
F(X) for an input X is represented in terms of a partition of dm,,(F') into
F~Y(F(X)) and its complement F'~!(F(X))¢. The current knowledge of F
at an instant ¢ is in its current event that also defines a partition denoted above
pt(X,1t).

How this local knowledge represented by pt (X, t), is related to the partition
(F~Y(F(X)), F~Y(F(X))¢) mentioned just above? A possible answer is:
compare pt(X,t) (the local knowledge at an instant ¢ in terms of partitions)
with the partition (F~1(F(X)), F~Y(F(X))¢). This idea can be a priori
implemented differently, for example, in terms of conditional probabilities or
in terms of conditional entropies.

If we try to apply this idea to any of our examples, we find that the commands
that control the loops give trivial partition (dm, ()) because they are in all traces,
and these events give nothing useful. So we take only events that process inputs.

Consider ¢ (the example of palindromes). Using (2), (3) we get, omitting
technicalities and taking sufficient approximations:

p<r:1\w=(1..k)>x1+11%7 P(Tzo,w:(l._k))%m’

“)
where A(k) = a~* — . The probabilities @) do not reflect our information
intuition that ¢ converges to the result when & — v as one goes to 1, and the
other to 0. But if we take the respective entropy

I L AR AW
1+ A(k) ST+ A(Rk) 1+A(R) 21+ Ak)

)

we see that it goes to 0, thus, to total certainty.

Consider o (sum modulo 2). The similarity that we used for the trace space
of o in subsection 2.1 we call here weak similarity. Denote 0 ~'(a) by o = a.
Clearly, o = 0| = |0 = 1| = 2""%, P(0 = a) = 3, and P is a uniform
distribution over B".

Denote by S (a), where a € B, the set {z : s+ z(k) = a}; itis a set of type
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sm(X,t). For k < nandall a,b € B we have

a n—1
P(Sk(a)) = |SI;EL ) = 22n = %, P(S,(a)NSk(b)) = % (6)
P(o =d|s () = ¥ (S;D(?gkfzbf)k(b)) _ % -

We see that nothing changes with advancing of time, i.e., with k — n. If we
apply formula (I)) for conditional entropy, it gives a constant. Hence, with this
similarity, we do not see any convergence of ¢ to the result.

Let us try a stronger similarity: we say that a event s := s + z(k) is
(strongly) similar to s := s + 2/ (k) if x(i) = 2/(¢) for all 1 <+ < k. Denote
by Z(x), where x € B*, 1 < k < n, the set of inputs x such that for event
s := s + x(k) there holds x(i) = x(¢) for 1 < i < k; this set describes
the set of inputs of strongly similar events. We have |Z(y)| = 2" %, and
(0 =a)NZ(x)| =2""* 1 thus, P(Z(x)) = 2 % and P((0c = a)NZ(x)) =
27%=1_ S0 the measure of the space of continuations of the known part of
the input diminishes. The respective term in conditional entropy (1) gives
—27%"1log1 = 27%71 that is encouraging but the term related to Z(x)®
(notice that P(Z(x)¢) = 1—27%and P((c = a) N Z(x)¢) = 3 —27%7Y
bring us back to values that practically do not diminish. All this means only
that the classical entropy does not work, and we are to seek for entropy-like
measures that truly reflect our intuition.

The partition based measures of convergence look promising. However, one
can say that the number of partitions is limited by an exponential function of
|dm|. So if the complexity is very high, e.g., hyper-exponential, then there
is ‘not enough’ of partitions to represent the variety computations. In fact,
we think about certain class of problems that are outlined in the next section
for which there seems to be ‘enough’ of partitions. As for high complexity
problems, another interpretation of input data is needed. Some hints are given
in the next section 3.

3. On the structure of problems

Here are presented examples of problems together with a reference to their
inner structure that may be useful for further study of information structure
of computations and that of problems themselves along the lines discussed in
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the paper. The examples below concern only simple ‘combinatorial problems’.
The instances of these problems are finite graphs (in particular, strings, lists,
trees etc.) whose edges and vertices may be supplied with additional objects
that are either abstract atoms with some properties or strings. As examples
of problems that are not in this class one can take problems with exponential
complexity like theory of real addition or Presburger arithmetics. The problems
in the examples below are divided into ‘direct’ and the respective ‘inverse’ ones.

Direct Problems

(A1) Substring verification. Given two strings U, W over an alphabet
with at least two characters and a position k in W, to recognize whether
U=W(k,k+1,...,k+|U| —1), i.e., whether U is a substring of W from
position k.

(A2) Path weight calculation. Given a weighted (undirected) graph and a
path, calculate the weight of the path.

(A3) Evaluation of a Boolean formula for a given value of variables. Given
a Boolean formula ® and a list X of values of its variables, calculate the value
®(X) for these values of variables.

(A4) Permutation. Given a list of elements and a permutation, apply the
permutation to the list.

(AS) Binary convolution (or binary multiplication). For simplicity we con-
sider binary convolution that represents also the essential difficulties of mul-
tiplication. Given 2 binary vectors or strings z = x(0)...z(n — 1) and
y =y(0)...y(n — 1) calculate

i=k
2(k) = a()y(k—i), 0<k<(2n-2),

=0

assuming that (i) = y(i) =0forn — 1 < i < (2n — 2).
Inverse Problems

(B1) String matching. Given two strings W and U over an alphabet with at
least two characters, to recognize whether U is a substring of W.

(B2) Shortest path. Given a weighted (undirected) graph G and its vertices
u and v, find a shortest path (a path of minimal weight) from u to v.

(B3) Propositional tautology TAUT Given a propositional formula @, to
recognize whether it is valid, i.e., is true for all assignment of values to its
variables. A variant that is more interesting in out context is MAX-SAT: given
a CNF (conjunctive normal form), to find the longest satisfying assignment of
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variables, i.e. an assignment that satisfies the maximal number of clauses.

(B4) Sorting. Given a list of elements of a linearly ordered set, to find a
permutation that transforms it into an ordered list.

(BS) Factorization. Given z, to find x and y whose convolution or product
(in the case of multiplication) is z.

Examples (A1)-(A4) give algorithmic problems whose solution, based di-
rectly on their definitions, is practically and theoretically the most efficient.
Each solution consists in a one-directional walk through a simple data structure
making, again rather simple, calculations — something that is similar to scalar
product calculation.

In (A1) the structure is a list (k,k + 1,...,k + |U| — 1), and while walking
along it, we calculate conjunction of U (:) = W (i) for k < i < (k+ |U]) until
i reaches the last value or false appears.

Example (A2) is similar, where the list of vertices constituting the linear
structure is explicitly given, and the role of conjunction of (Al) is played by
addition.

The structures used in (A3) depend on the representation of ® and of the
distribution of values of its variables. In any case one simple linear structure
does not suffice here. Suppose @ is represented in DNF (Disjunctive Normal
Form), i.e., as a disjunction of conjunctions. This can be seen as a list of
lists of literals, and a given distribution of values is represented as an array
corresponding to a fixed order of variables. So given a variable, its value is
immediately available. Thus, the representation of values is a linear structure,
and DNF is a linear structure of linear structures. It is more interesting to
suppose that @ is a tree. Then we deal with the representation of values and
with a walk, again without return, through a tree with calculating the respective
Boolean functions at the vertices of the tree. So we see another simple basic
structure, namely a tree.

In example (A4), while walking through two given lists, namely a list of
elements and a permutation, a third list (a list of permuted elements) is con-
structed.

Example (A5) is more complicated, and the definition of problem does not
give an algorithm that may be considered as the best; it is known that the direct
algorithm for convolution is not the fastest one. Here there is no search, and
for this reason this problem is put in the class of direct ones, but there is a
non-trivial intermixing of data. One may see the description of the problem as
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a code of data structures to extract, and then to calculate the resulting values by
simple walks through these data structures. The number of the data structures
to extract is quadratic. In order to find a faster algorithm, one should ensure
the same intermixing but using different data structures and operations.

Examples (B1)-(B5) give algorithmic problems of search among substruc-
tures coded in inputs. The number of these substructures, taken directly from
the definition, is quadratic for (B1), and exponential for (B2)-(B5). The sub-
structures under search should satisfy conditions that characterize the corre-
sponding direct problem. More complicated problems code substructures not
so explicitly as in examples (B1)—(B5). To illustrate this, take e.g., quantifier
elimination algorithm for the formulas of the theory of real addition, not nec-
essarily closed formulas. Here it is not evident how to define the substructures
to consider. The quantifier elimination by any known algorithm produces a
good amount of linear inequalities that are not in the formula. So the formula
codes its expansion that is more than exponentially bigger as compared with
the initial formula itself.

Whatever be the mentioned difficulties, intuitively the substructures and
constraints generated by a problem may be viewed as an extension of the set of
inputs. And in this extended set one can introduce not only measure but also
metrics that give new opportunities to analyze the information contents and
the information evolution. One can see that the cardinality constraints on the
number of partitions that was mentioned in subsections [2.3|and [2.4]is relaxed.
This track has not been yet studied, though one observation can give some hint
to how to proceed. When comparing substructures it seems productive to take
into account its context, i.e., how it occurs in the entire structure. For example,
we can try to understand the context of an assignment A of values to variables
of a propositional formula ® in the following manner. Pick up a variable z;
and its value v; from A and calculate the result ®(x1,v1) of the standard
simplification of ® where x; is replaced by Boolean value v;. This resulting
residue formula gives some context of (z1,v1). We can take several variables
and look at the respective residue as at a description of context. This or that
set of residues may be considered as a context of A. It is just an illustration of
what I mean here by ‘context’.

A metric over substructures may distinguish ‘smooth’ inputs from ‘non-
smooth’ ones, and along this line we may try to distinguish practical inputs
from non practical ones. Though it is not so evident.
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For some ‘simple’ problems such a distinction is often impossible. It looks
hard to do for numerical values. The set of such values often constitutes a
variety with specific properties that may represent realistic features but almost
all elements of such varieties will never appear in practical computations.
An evident example is binary multiplication. Among 2'%® possible inputs of
multiplication of 64-bit numbers most of them will never be met in practice.

A remark on the usage of linguistical frameworks

One more way to narrow the sets of inputs to take into account, is a language
based one. Inputs describing human constructions, physical phenomena, and
their properties, when they are not intended to be hidden, have descriptions in
a natural language. Encrypted data are not of this nature. So for input data
with non hidden information, we have a grammar that generates these inputs.
Such a grammar dramatically reduces the number of possible inputs and, what
is more important, defines a specific structure of inputs. The diminishing of
the number of generated inputs is evident. For example, the number of ‘lexical
atoms’ of the English is not more than 250 thousands, i.e., not more than 28,
On the other hand, the number of strings with at most, say, 6 letters is at least
262 = 20110826 ~ 9647 ~ 928 (here 26 is the number of letters in English
alphabet). The set of cardinality 2'® is tiny with respect to the set of cardinality
228 If one tries to evaluate the number of phrases, the difference becomes
much higher.

But this low density of ‘realistic’ inputs does not help much without deeper
analysis. The particular structure of inputs may help to devise algorithms
more efficient over these inputs than the known algorithms over all inputs;
there are examples, however not numerous and mainly of more theoretical
value. So if one wishes to describe practical inputs in a way that may help
to devise efficient algorithms, one should find grammars well aimed at the
representation of particular structures of inputs. This point of view does not
go along traditional mathematical lines when we look for simple and general
descriptions, that are usually too general to be adequate to the computational
reality.

The grammar based view of practical inputs may influence theoretical vision
of a problem. For example, consider the question of quality of encryption.
The main property of any encryption is to be resistant to cryptanalysis. Notice
that linguistic arguments play an essential role in practical cryptanalysis. In
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reality the encryption is not applied to all strings, it mostly deals only with
strings produced by this or that natural language, often rather primitive. Thus,
there are relations defined over plain texts. E.g., some substrings are related as
subject-predicate-direct compliment, etc. A good encryption should not leave
traces of these relations in the encrypted text. What does it mean? Different
precisions come to mind. A simple example: let P be a predicate of arity
2 defined over plain texts, and its arguments be of small bounded size. Take
concrete values A and B of arguments of P. Assume that we introduced a
probabilistic measure on all inputs (plain texts), and hence we have a measure
of the set ST of inputs where P(A, B) holds and of its complement S~. Now
suppose that we have chosen a predicate () over ‘substructures’ of encrypted
texts (I speak about ‘substructures’ to underline that the arguments of () are not
necessarily substrings, as for P), again simple to understand. Denote by £+
the set of encrypted texts for which () is true for at least one argument and by
E~ its complement. The encryption well hides P(A, B) if the measures of all
4 sets (SN EP), where a, B € {+, —}, are very ‘close’. This example gives
only an idea but not a productive definition.

However, in order to find grammars that help to solve efficiently practical
problems ‘semantical’ nature of sets of practical inputs should be studied.

Conclusion

The considerations presented above are very preliminary. The crucial question
is to define information convergence of algorithms, not necessarily of general
algorithms, but at least of practical ones.

One can imagine also other ways of measuring similarity of traces. We can
hardly avoid syntactical considerations when keeping in mind the computational
complexity. However semantical issues are crucial, and may be described not
only in the terms chosen in this paper.

The analysis of philosophical question of relation of determinism versus
uncertainty in algorithmic processes could clarify the methodology to choose.
Here algorithmic process is understood at large, not necessarily as executed
by a computer. Though the process is often deterministic, and if we adhere to
determinism then it is always deterministic, at a given time instant, when it is
not yet accomplished, we do not know with certainty the result, though some
knowledge has been acquired. The question is: what is or how to formalize
the knowledge (information) that the algorithm acquires after each step of its
execution?
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Abstract: Discussions on the scientific pluralism typically involve the unity of science
thesis, which has been first advanced by Neo-Positivists in the 1930-ies and later widely
criticized in the late 1970-ies. In the present paper the problem of scientific pluralism
is examined in the context of modern logic, where it became particularly pertinent after
the emergence of non-Classical logics. Usual arguments in favor of a unique choice of
“the” logical system are of an extralogical nature. The conception of Universal Logic
as a theory of mutual translatability and combination of alternative logical systems
allows for a more constructive approach to the issue. Logical pluralism gives rise
not only to the ontological pluralism but also to non-Classical mathematics based on
various non-Classical logics. Our analysis of ontological pluralism rises the following
question: is our mathematics globally Classical and locally non-Classical (i.e. having
non-Classical parts) or rather, the other way round, is globally non-Classical and only
locally Classical? We conclude that in the context of post-non-Classical science the
logical pluralism justifies one’s freedom to chose logical tools in conformity with
one’s aims, norms and values.
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1. An issue of the unity of science

Presently many philosophers and scientists are inclined to take a pluralistic
position regarding scientific theories or methods. It is a common wisdom that
the totality of natural phenomena cannot be possibly explained with a single
theory or a single approach. (cf. [14]). Current debates on the scientific
pluralism usually involve the ‘Unity of Science’ thesis first advanced by Neo-
Positivists in the 1930-ies. According to this thesis

Laws and concepts of particular sciences have to belong to the one system
and be reciprocally related. They have to form certain unified science
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with a common system of concepts (common language), separate sciences
are just the members of it and their languages are parts of the common
language. [15| p. 147-148]

In 1978 Patrick Suppes [27] in his presidential address to the Philosophy
of Science Association claimed that the time for defending science against
metaphysics (which he took to be the original rationale for the unity of science
movement) had passed. Suppes argued that neither the languages of scientific
disciplines nor their subject matters were reducible to one language and one
subject matter. Nor was there any unity of method beyond the trivially obvious
such as use of elementary mathematics.

The majority of philosophers of science were not particularly enthusiastic
about Suppes’s ideas. A noticeable exception was Nancy Cartwright and her
collaborators who stressed the irreducible variety of scientific disciplines in-
volved in solving concrete scientific problems. Later Cartwright [7]] elaborated
a pluralistic account of a ‘dappled world’ composed of a number of separate
areas. Each particular area of this world is ruled by its own laws, so that
this system laws form a loose patchwork, which does not reduce to a single
compact system of fundamental laws. A similar view has been put forward by
John Dupré [11] who also supports a pluralist metaphysical position called the
“promiscuous realism”.

One has to distinguish between the pluralism in science and the pluralism
about science. At any stage of their development sciences typically use a
variety of different approaches corresponding to different aspects of studied
phenomena. They use various representational or classificatory schemes, vari-
ous explanatory strategies, various models and theories, etc. This is a pluralism
in science. The pluralism about science is a view according to which such a
plurality of approaches in science is ineliminable as a matter of principle, and
that it does not constitute any deficiency in knowledge. According to this view,
an analysis of meta-scientific concepts (such as theory, explanation, evidence)
should take into consideration the possibility that in the long run the explana-
tory and investigative aims of science can be best achieved with a pluralistic
science.

Modern scientific monism can be described as follows [14, p. X]:

* the ultimate aim of a science is to establish a single, complete, and compre-
hensive account of the natural world (or the part of the world investigated
by the science) based on a single set of fundamental principles;
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* the nature of the world is such that it can, at least in principle, be completely
described or explained by such an account;

* there exist, at least in principle, methods of inquiry that if correctly pursued
will yield such an account;

* methods of inquiry are to be accepted on the basis of whether they can
yield such an account;

* individual theories and models in science are to be evaluated in large
part on the basis of whether they provide (or come close to providing) a
comprehensive and complete account based on fundamental principles.

Notice that the above description does not imply that the wanted complete
theory of everything is necessarily unique. Nevertheless such the uniqueness
assumption is often taken for granted.

The Vienna’s Circle’s thesis of the Unity of Science describes this unity in
ontological terms. As Alan Richardson notes, when Rudolf Carnap claims to
establish the unity of ‘the object domain of science’ he

does this by presenting a language in which all significant scientific dis-
course can be formulated. Putative metaphysical things such as essences,
however, cannot be constructed — that is, they cannot be defined in the lan-
guage — and this is the fact that Carnap uses to expunge metaphysical talk.
Metaphysics does not speak of things in the object domain of science; there
is only one such domain, and it contains all the objects that can be referred
to, so metaphysics strictly does not speak of anything at all. [23} p. 6]

Carnap adds that

we can, of course, still differentiate various types of objects if they belong
to different levels of the constructional system, or, in case they are on the
same level, if their form of construction is different. [6] p. 9]

He gives an example of synthetic geometry where complex constructions
are built from basic elements such as points, straight lines, and planes. Such
constructions may involve several different layers but all statements about these
constructions are ultimately the statements about their basic elements. So we
have here different types of objects and yet a unified domain of objects from
which they all arise.

The question arises: how big and how independent can be such complexes?
It turns out that the “global” monism in the sense of the above definition
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allows, after all, for a pluralistic picture if one splits it into a number of “local”
monisms based on independent complexes. A good example is a situation in
today’s non-Classical logics to which we now turn.

2. Logical pluralism and logical monism

The Tower of Babel is a cultural pattern, which recurs again and again. The
first attempt of its erection, as it is well known, ended up with a catastrophe and
produced multiple languages and the lack of understanding between the builders
of this monster. However this was not the end of the story. A new Babel Tower
dating back to Aristotle and the Stoics was the project of developing a unique
and uniform logic supposed to provide rules of correct reasoning for all. This
attempt seemed successful throughout the last two thousand years but eventually
it failed as a result of the development and proliferation of the so-called non-
Classical logics. Some thinkers including Aristotle himself considered certain
deviations from the Classical logic earlier but only in the beginning of the
20-th century researches began to explore this new territory systematically.
As a result many today’s logicians hold a view according to which there exist
many alternative systems of logic rather than a single “right” logic. This view
is known under the name of logical formalism. Although the philosophical
analysis of logical pluralism is still in its infancy the soundness of this view
is hardly any longer questionable. It is possible that the logical pluralism will
point to ways out of some deadend of modern logic and determine a strategy
for developing logic in the 21st century. Implications of logical pluralism for
the modern also still wait to be studied. In what follows we shall consider some
problems of logical and metalogical pluralism and explore their implications
for ontology and foundations of mathematics.

It may appear that the logical monism does not need an argumentative defense
because it is supported by more then two thousand years of the history of logic.
However the situation is not so is simple. Does the Classical logic in some
sense imply the logical monism? Or perhaps some non-Classical logic can play
the same role of the only “right” logic common for all? The Intuitionistic logic
at certain point of history was considered as a candidate for this role. Later
were considered some other candidates such as the Relevant logic, which allows
one to avoid certain paradoxes appearing in the Classical logic. According to
Stephen Read [21]], the only purpose of logic is to distinguish between valid and
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invalid inferences. Hence, the argument goes, there is only one “true” logic,
which can be nothing but the Relevant logic.

However if one takes into account how the concept of relevance has been
modified in the course of the 20-th century, one can hardly accept this and
similar arguments of logical monists. All such arguments are ultimately ethical
or aesthetic arguments rather than properly logical. They call for the “lost
paradise”, from where logics and logicians have been earlier expelled. The
existing experience of metalogical researches indicates that there is no logical
system satisfying all wanted metalogical properties and free from all paradoxes.
As a matter of fact, it is difficult to single out even a short list of universal meta-
properties which the ideal logical system of logical monists should necessarily
possess.

Earlier R. Carnap [5] put forward the Principle of Tolerance in logic ac-
cording to which logic should justify conclusions rather than establish some
bans. There is no moral in logic and everyone has a liberty of building his or
her own system of logic. As a matter of fact Carnap talks about the choice
of formal language rather than the choice of logic. As it has been shown by
G. Restall [22]] one and the same language may admit for different logical con-
sequence relations. So the distinction between language and logic is essential
in this context.

Beall and Restall point to the following problem of logical pluralism:

Which of these many logics governs your reasoning about how many logics
there really are? In other words, which logic ought to govern your reasoning
about the nature of logic itself? And indeed, which logic ought to govern
your reasoning about the nature of logic itself? [1} p. 6]

Indeed, a goal of logical pluralist is to study mutual relationships between
the known logical systems. These logical systems can be seen either as a list
of candidates for the same role of “the” unique “true” logic or as a friendly
“logic community” providing different answers to the same questions. The
builders of the Babel Tower eventually lost a common language and a mutual
understanding. Does the existing logical community await the same fate?

A basic problem of logical pluralism is the problem of relationships between
different systems of logic. How such systems can be compared and evaluated?
If we recall that a logical theory is always a theory of some individual domain
then the logical pluralism can be understood as the thesis according to which
the one and the same domain, generally, admits for several alternative logics.
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Logical rules do not depend on empirical reliability, they cannot be cancelled
because of empirical observations: logic is aprioristic by its very nature. Hartry
Field argues [12] that a system of logic accepted a priori can be eventually
replaced by an alternative logical system, equally designed a priori, under
the pressure of facts. This view qualifies as a sort of fallibilistic apriorism
(borrowing the term from the philosophy of science). However such a revision
of logic can be possibly viewed as a mere recognition of the fact that the old
logic simply did not correspond to the studied individual domain. As notices
Ottavio Bueno [4] this possibility cannot be ruled out a priori.

3. Logical eclecticism and logical relativism

The logical monism is a dogmatic position. The logical eclecticism, in its turn,
is a variety of logical pluralism, which makes a choice of the best logical system
from a list of such systems and aims at harmonizing competing approaches. On
the other hand it operates like logical monism when it rejects certain moments
of known logical systems as “erroneous’.

A problem of logic eclecticism, as well as of any other sort of eclecticism,
is the arbitrariness of choices: one chooses and uses certain principles without
having any general theory justifying the choice. However the choice between
logical systems becomes interesting when one translates problems formulated
in some given logical framework into a different logical framework. This allows
one to look at the given problem from a different viewpoint and sometimes helps
to find an unexpected solution.

The same feature belongs to the position called logical relativism. Roy
Cook describes it as follows: one qualifies as a relativist about a particular
phenomenon if and only if one thinks that the correct account of it is a function
of some distinct set of facts [9, p. 493]. How many similar correct accounts
of the same set of facts can exist in principle? If the answer is that such
accounts are multiple then this position reduces to a version of pluralism; of
one assumes that there is only one such account then it reduces to monism.
In this context Cook distinguishes between the dependent and simple varieties
of pluralism. While former variety of pluralism is based on the relativism the
latter is not. It may appear that an obvious example of the dependent pluralism
is given by the Tarskian Relativism [29]] according to which every term in a
formal language can be equally treated either as logical or non-logical. But, as
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Varzi rightly notices, the Tarskian Relativism implies a stronger form of logical
relativism according to which different ways of specifying the semantics of
terms are equally admissible. It is possible, for example, that you and I agree
that identity is a logical constant but you may think that it stands for a transitive
relation whereas I may not accept this assumption.

4. Metalogical relativism as the consequence of logical
pluralism

Varzi’s paper referred to above makes it clear that Tarskian Relativism adds
to the logical pluralism a new dimension related to the choice of logical se-
mantics. Each variant of logical semantics comes with its own conception of
logical consequence. Indeed, the usual definition of logical consequence —
the conclusion follows from the given premises when in every case where the
premises are true the consequence is also true — only looks neutral. In fact it
involves the concept of truthfulness which depends on the chosen semantics of
logical terms. Alternatively one may use in this definition a metaimplication

opening thus yet a further dimension of pluralism.
Should be one’s metalogic necessarily Classical? Graham Priest, considering
Tarski’s theory of truth and his T-construction, writes that

sometimes it is said that Tarskian theory must be based on Classical logics:
this logic is required for the construction to be performed. Such a claim is
just plain false. It can be carried out in intuitionistic logics, paraconsistent
logics, and, in fact, most logics. [20, p. 45]

Thus the Tarskian Relativism turns into the metalogical relativism and the
metalogical pluralism. It allows for considering various alternative definitions
of logical consequence such as: “the conclusion follows from premises if and
only if any case in which each premise is true is also a case in which conclusion
is relevantly true” (a case of Relevant metalogic), “the conclusion follows from
premises if and only if any case in which each premise is true is also a case in
which conclusion is intuitionistically true” (a case of Intuitionistic metalogics),
“the conclusion follows from premises if and only if any case in which each
premise is true is also a case in which conclusion is paraconsistently true” (a
case of Paraconsistent metalogic), “the conclusion follows from premises if and
only if any case in which each premise is true is also a case in which conclusion
is quantum logically true” (a case of quantum metalogic), etc.
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Moreover, apparently nothing prevents one from correlating one’s concept of
logical consequence with a non-Classical logic. Then the above definition can
be modified as follows: “the conclusion intuitionistically follows from premises
if and only if any case in which each premise is intuitionistically true is also
a case in which conclusion is intuitionistically true” (the case of Intuitionistic
logic and metalogic), “the conclusion relevantly follows from premises if and
only if any case in which each premise is relevantly true is also a case in which
conclusion is relevantly true” (the case of Relevant logic and metalogic), “the
conclusion intuitionistically follows from premises if and only if any case in
which each premise is relevantly true is also a case in which conclusion is
relevantly true” (the case of Relevant metalogic for Intuitionistic logic), “the
conclusion relevantly follows from premises if and only if any case in which
each premise is intuitionistically true is also a case in which conclusion is
intuitionistically true” (the case of Relevant metalogic for Intuitionistic logic),
etc. Here the choice may be limited by certain specific properties of these
‘cases’ [24, p. 396].

Thus we can formulate a “metalogical” definition of logical consequence as
follows:

A conclusion is valid in the given logic if in the corresponding metalogic the
validity of premises implies the validity of the conclusion.

On this basis it is possible to construe two further different versions of the
above metalogical definition:

(i) a conclusion is valid in some logic if in some metalogic the validity of
premises implies the validity of the conclusion.

(ii) a conclusion is valid in some logic if in all metalogics the validity of
premises implies the validity of the conclusion.

The second version is hardly realistic since all possible metalogics can be
hardly taken into account. One may also suspect that the choice of metalogic
may depend on the existence of ‘translation’ from certain logic to the given
logic. Indeed, all “mixed” principles arise via a meddling or substituting seman-
tics of one logic to another. These semantic operations may provide grounds
for further arguments pro or contra the monistic (when logic always coincides
with the metalogic) and (when logic and metalogic may differ conceptually)
points of view.

A non-Classical metaimplication gives rise to a meta-metalogical definition
of logical consequence as follows:
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* A conclusion follows from premises iff the truth of the conclusion follows
from the truth of premises iff in all cases the truth of premises implies the
truth of the conclusion.

On the one hand, this is a bad infinity. But on the other hand, this situation
can be described in terms of S. Kripke’s theory of truth [16]:

* A conclusion logically follows from premises if and only if the truth of the
conclusion follows from the truth of premises if and only if the truth of
the truth of the conclusion follows from the truth of the truth of premises.

* Mutatis mutandis in case of the ‘mixed’ principle. In this case in addition
to Kripke’s considerations of cases of the truth or falsity at corresponding
meta-levels we need also to construe the truth on pluralistic variants of
meta-levels.

S. Logical pluralism and universal logics

How statements of the form ‘A follows from B iff B is true implies A is true
in metalogic M’ can be compared in the case of different metalogics? Some
authors suggest that this can be done with a theory of Universal Logic that
would provided criteria for such a comparison (see [32}|33]]).The Universal
Logic (UL) is a theory of translatability and combination of logical systems.
The above statements can be compared with UL as follows. First one constructs
a translation F' from (meta)logic Y; to (meta)logic Ys. Then

‘A follows from B iff B is true implies in Y1 A is true’

translates under F' into

‘A follows from B iff F'(B is true) implies in Y F' (A is true)’.

If such translations between different metalogics exist then we can speak
about a local metalogical monism: the translatability gives us an invariant
kernel preserved through translations.

Instead of linking by means of translation we would consider, using meth-
ods of universal logic, the combinations of two formulations, e.g. join of two
formulations. In this case join of two logics gives us the uniform logic pos-
sessing properties of both initial logics. In particular, in union Y1 Y5 of two
metalogics Y7 and Y5 “joint” consequence relation is defined by means of a
condition:
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if from A is true in one metalogic (Y7 or Y3) follows B is true in the same
metalogic then B jointly follows from A (i.e. within the framework of the
metalogic Y16 Y5).

To put it more precisely “jointly follows” gives us that

o A follows from B iff A is true implies in Y1® Y5 B is true.

Instead of unions of metalogics one can also use their product (taking pairs
of metaformulas as new metaformulas), so the definition becomes

if B multiplicatively follows from A (i.e. within the framework of the meta-
logic Y1® Y3) then from A is true in both metalogics (Y7 and Y>) follows B is
true.

“Multiplicativeness” gives us that

o if A is true follows in metalogic Y1® Y5 from B is true then A follows
from B.

Similarly one can consider the exponential and co-exponential local met-
alogical monism combining metasystemsY;, Ys into Y7 = Yo and Y] < Y5
respectively and then use the “implications” of these combined metasystems in
the definition of logical consequence of the same form (provided such combi-
nations as allowed in UL).

An obstacle for this project is the omniscience problem: we cannot explicitly
describe all possible logics in advance and hence cannot accomplish all possible
combinations of logics. The above types of combinations of (meta)logical
systems do not exhaust all possible combinations being only the most common
ones.

6. From logical to ontological pluralism

According to J. Bochenski, the modern logic is “a most abstract theory of
objects whatsoever” or a “physics of the object in general”. Thus “logic, as it
is now constituted, has a subject matter similar to that of ontology” [3}, p. 288].

In effect, ontology is a prolegomenon to logic. While ontology is an informal,
intuitive inquiry into the basic properties and basic aspects of entities in general,
logic is the systematic, formal, axiomatic elaboration of these ontological
intuition. While ontology as it is usually practiced is the most abstract theory
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of real entities, logic in its present state is the general ontology of both real and
ideal entities [3, p. 290].

Thereby logical pluralism is ‘dangerous’ because it implies the ontological
pluralism. Since any logical theory is always a theory of some domain of
individuals, the acceptance of this or that logic compels to certain assumptions,
hypotheses about the cognizable objects inhabiting this area and described by
our theory. Itis a good thing if we are in a position to control these assumptions;
too often such assumptions remain tacit.

Ontological assumptions are specific to languages — artificial or natural.
The term “ontological commitment” that denotes this phenomenon can be
understood either as an ontological assumption, or an ontological obligation or
as an ontological hypothesis. Scientific artificial languages, which are always
designed for a definite purpose, may enforce certain ontological commitments
not intended by their designers.

Such troubles are rooted in the fact that formal languages designed for the
scientific purposes should cope with two different ontologies, one of which
represents the domain of scientific inquiry while the other belongs to the
language itself and depends on its formal properties. The history of science of
the 20-th century makes it clear that interactions between these two ontological
layers cannot be ignored.

How ontological assumptions of a given formal language can be identified?
An answer is given by A. Church’s criterion: a language carries an ontological
commitment associated with every sentence, which is analytic in this language,
i.e., of every true sentence whose truth is granted by the semantics of this

language. The distinction between analytical and synthetic sentences is made
here as follows:

One can single out two types of propositions: propositions, whose truth or
falsity should be established on the basis of semantic rules of the system,
and propositions, whose truth or falsity cannot not be seen from them. Such
division of statements of language in respect to fixed semantic system, divi-
sion on analytical and synthetic in this sense, in our opinion, is indisputable.
The question consists in their exact definition and interpretation. [25] p. 88]

The usual semantics of the first-order Classical logic is given in terms of its
Tarskian models. The universe of all sets and the related set theory provide in
this case the proper ontology for this language. Thus in the case of this particular
language the ‘theory of objects in general’ coincides with some version of set
theory (possibly with urelements and empirical predicates, see [8]]).
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However the set theory is itself an elementary theory, i.e., a set of formal
statements deduced from a conservative axiomatic extension of predicate logic
with certain non-logical axioms, which describe formal properties of predicate
€. By modifying the logical part of this theory one can obtain a new theory
based on some non-Classical logic: Paraconsistent, Relevant, Quantum, Fuzzy
etc. Thus one obtains a class of non-Classical set-theoretic universes associated
with their non-Classical underlying logics.

There is another simple argument supporting the claim that logical pluralism
implies the pluralism of universes. Consider usual definitions of operations of
join U, meet N and complement / on sets

zUy =gf{a:a€azVacey}
TNy =gef{a:acazNacy},

)y =gef {a:a€xN-(ac€y)}

A pluralist may ask: what type of connectives V (or), A (and), — (it is
incorrect, that) are used in these definitions? If these are Classical connectives
then the algebra of subsets of a given set is Boolean.

But what happens, if one modifies the operations on sets using non-Classical
logic connectives V, A, = and then construes an algebra for the obtained new
operations? Since in Tarskian models set-theoretic operations are responsible
for truth values of formulas this provides us with an interpretation of a non-
Classical logic in the Classical universe. In this way one can interpret in the
given Classical universe as many non-Classical logics as one wants. One can
also use a non-Classical universe and introduce in it Classical set-theoretic
operations. So one gets an interpretation of Classical logic (along with non-
Classical ones) in a non-Classical universe.

Is there a way to check whether “our” universe is Classical or non-Classical?
Logical pluralism gives an answer in negative. One can assume the existence
of a global underlying logic for a given universe but this global logic does not
determine any set of local logics, which this universe may admit. Of course,
we talk about global and local logics in this context only metaphorically as
markers fixing a state of affairs.
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7. Non-Classical mathematics: as many logics as math-
ematics

The 20-th century has witnessed how the original intuitionist and constructivist
renderings of set theory, arithmetic, analysis, etc. were later accompanied by
those based on relevant, paraconsistent, non-contractive, modal, and other non-
Classical logical frameworks. This development led to the ongoing scientific
program of “Non-Classical Mathematics”. At the conference ‘“Non-Classical
Mathematics 2009” (June 2009, Hejnice, Czech Republic) the non-Classical
Mathematics 2009 has been defined as a study of mathematics which is for-
malized by means of non-Classical logics. The Program of this conference
included the following sections:

* Intuitionistic mathematics: Heyting arithmetic, Intuitionistic set theory,
topos-theoretic foundations of mathematics;

» Constructive mathematics: constructive set or type theories, pointless
topology;

¢ Substructural mathematics: Relevant arithmetic, non-contractive naive set
theories, axiomatic fuzzy set theories;

¢ Inconsistent mathematics: calculi of infinitesimals, inconsistent set theo-
ries;

* Modal mathematics: arithmetic or set theory with epistemic, alethic, or
other modalities, modal comprehension principles, modal treatment of
vague objects, modal structuralism.

It is obvious, that there is not one but many true mathematics. But it remains
unclear how these different mathematics interact. Are they complementary or
mutually exclusive? This situation resembles that with non-Euclidean geome-
tries. This analogy suggests questions like this: is our mathematics globally
Classical, and only locally non-Classical or, on the contrary, it is globally

non-Classical and locally Classical?
Gaisi Takeuti develops a quantum set theory, which involves a quantum-
valued universe. It remains however unclear whether the

mathematics based on quantum logic has a very rich mathematical content.
This is clearly shown by the fact that there are many complete Boolean
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algebras inside quantum logic. For each complete Boolean algebra B,
mathematics based on B has been shown by our work on Boolean valued
analysis to have rich mathematical meaning. Since mathematics based on B
can be considered as a sub-theory of mathematics based on quantum logic,
there is no doubt about the fact that mathematics based on quantum logic
is very rich. The situation seems to be the following. Mathematics based
on quantum logic is too gigantic to see through clearly. [28| p. 303]

Robert Meyer proposes a construction of Relevant arithmetic built along the
same ‘pluralistic’ line on a basis of Relevant logic [18]. Recall that Peano
Arithmetic (PA) is based on the first-order Classical logic (FOL) and involves
a number of non-logical axioms. Relevant Peano arithmetic R# according to
Meyer is obtained from PA via a replacement of FOL by a system of Relevant
logic R, leaving the non-logical axioms unchanged.

One more instance of a non-Classical mathematical theory is given by
K. Mortensen in his book Inconsistent Mathematics [[19]. Claiming that
“philosophers have hitherto attempted to understand the nature of contradic-
tion, the point however is to change it” , Mortensen describes the mathematics
based on the Paraconsistent logic.

In a more sophisticated way a non-Classical logical basis is used in theories of
formal topology. A topological structure is usually specified via a specification
of set of opens closed under the set-theoretical intersection. By modifying the
concept of intersection one obtains a family of new topologies. In particular
the set-theoretic intersection can be replaced by the operation of monoidal
multiplication. Such constructions can be made with a non-Classical set theory
interpreted in a Classical universe.

When one accepts logical pluralism and allows for various logical foun-
dations formal topological properties can be equally taken into account. An
example of such an account can be found in the Quantum theory (QT). Garrett
Birkhoff and John von Neumann demonstrated an equivalence between exper-
imental statements of QT and subspaces of Hilbert spaces. The set-theoretic
intersection of two given experimental statements (represented as the closed
vector subspaces of Hilbert space) is also an experimental statement (i.e., a
closed vector subspace of Hilbert space). Whence one easily defines a topo-
logical structure using the standard definition of boundary.

However when one takes into account the fact that the negation of an ex-
perimental statement is its orthogonal complementation, one obtains a formal
topology, which differs from its Classical counterpart.
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Today’s mathematics is going through a paradigm shift in its foundations
from the set-theoretic paradigm to the category-theoretic one. From a logical
point of view Category theory like Set theory is an elementary theory based on
the Classical first-order calculus with equality.

Following N. C. A. da Costa, O. Bueno and A. Volkov [[10]] one can build
Paraconsistent elementary theory of categories using the paraconsistent logic
C7T . The axioms of the Paraconsistent category theory include all usual axioms
with the Classical negation and some new axioms with the paraconsistent
negation. One can also construct a Paraconsistent category theory [33] using
axioms for category theory proposed by G. Blanc and M.-R. Donnadieu [2].

Recall that topos is a category of a special kind in which there exists a
special object bearing a structure of Heyting algebra. The above algorithm
for developing non-Classical mathematical theories allows one to build various
‘quasi-toposes’ by replacing Heyting algebra with some other algebras of logics.
For example, the replacement of Heyting algebra by the paraconsistent da Costa
algebra brings a ‘potos’ (aka da Costa topos). A potos is a paraconsistent
universe in which one can develop paraconsistent mathematical theories just
as in the case of the Intuitionistic mathematics. While in the usual topos the
paraconsistency features only in special constructions and in this sense remain
local artefacts, in a potos the paraconsistency is organic and underlies all further
constructions. In the paraconsistent universe the Classical mathematics features
as an artefact, i.e. as a local deviation from the paraconsistent regularities.

Similarly one can replace Heyting algebra with the Relevant one and thus
obtain a category called ‘reltos’ which interprets the Relevant logic and allows
for developing the Relevant mathematics [34]. This short list does not exhaust
all possibilities for developing the non-Classical mathematics.

Toposes, generally, are non-Classical constructions, namely, constructive
intuitionistic universes.

By imposing natural conditions on a topos (extensionality, sections for
epics, natural numbers object), we can make it correspond precisely to a
model of Classical set theory. Thus, to the extent that set theory provides a
foundation for mathematics, so too does topos theory. |13} p. 344]

What a “natural condition” means precisely in this context?

In a topos-theoretic context a Classical universe is a local construction (being
a special case of general topos) while the nature of general topos is purely
intuitionistic, i.e., essentially non-Classical. Thus the general topos serves
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as a global non-Classical foundation of mathematics, which can be Classical
locally.

Other kinds of non-Classical mathematics can be similarly obtained locally
in the same global intuitionistic context. This can be achieved with Lawvere’s
‘variable sets’ aka intensional sets aka “set-theoretical concepts” (R. Goldblatt’s
terminology). According to Goldblatt, the intension or meaning of a given
expression, is an “individual concept expressed by it”. For example, if ¢(x)
is the statement ‘z is a finite ordinal’ then the intension of ¢ is the concept of
a finite ordinal. In the categorical language this concept is represented by a
functor that assigns to each p € P a set of things known “at stage p” to be finite
ordinals [13, p. 212].

By varying p, one can impose different “natural restrictions” on given sets
of individuals and thus obtain set-theoretic concepts, which describe non-
Classical sets. In particular, such a variation can be used for interpreting
quantum logics in toposes; in this case the obtained set-theoretic concepts
characterize quantum sets.

Likewise it is possible to use functor category Set from the so-called
C N-category (which is a category-theoretic equivalent of da Costa algebra)
to category Set. This category is a topos. Notice that the completeness of
da Costa C'! paraconsistent system has been proved with respect to a similar
topos [30]. A similar approach can be used in the case of Relevant logic R [31]].

Presently only a small minority of mathematicians expresses an interest
in the non-Classical mathematics (beyond its intuitionistic and constructive
varieties, which are related to the theory of computability). There are two
reasons for this. First, the non-Classical mathematics so far did not bring
anything interesting for the viewpoint of mathematical novelty. Researches in
this field still focus on mathematical characteristics of non-Classical logics and
their models. This common tendency is evident in spite of some noticeable
exceptions (e.g. Kris Mortensen’s book ’Inconsistent Mathematics’, an attempt
by K. Piron to reformulate quantum mechanics on quantum logic foundations).
Perhaps the development of interactive non-Classical provers and decision-
making systems will be able to make this research filled more vivid. The
effectiveness and the convenience of the human-machine interaction may serve
as a strong argument in favour of this or that non-Classical mathematics.

Second, there is a danger for non-Classical mathematician to become a ‘hero
of deserted landscapes’. Polish science-fiction writer Stanistaw Lem distin-
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guished between three kinds of genius [[17, p. 89]. A genius of the third kind
is an ordinary genius who is beyond the intellectual scope of his age. A ge-
nius of the second kind is a hard nut, which his contemporaries cannot crack.
Such a genius usually gets a postmortem recognition. Geniuses of the first
and the highest kind remain wholly unknown — both during their lifetimes and
after their deaths. Their intellectual impact is so revolutionary that no one can
evaluate it. Lem provides a fictitious historical example of a manuscript by
an anonymous Florentian mathematician of 18-th century, which prima facie
appeared to be a work in Alchemy but at a closer examination turned out to
be a project of alternative mathematics, which differed drastically from our
mathematics as we know it. Checking whether this alternative mathematics is
better or worse than the usual one would require a lifetime work of hundreds of
scientists working on the manuscript by the Florence Anonymous in a way sim-
ilar to which Bolyai, Lobachevsky and Riemann worked on Euclid. In reality
most mathematicians simply avoid developing any ‘parallel’ mathematics.

8. Conclusion

Recent developments in logic support a pluralistic logical picture of the world.
Besides, it should not be expected that such situation is true only for logics. The
emergence of non-Classical mathematics should not be seen as a supporting
evidence for logicism. It should be rather understood as a natural consequence
of the internal pluralism of logic which has been made explicit in recent de-
velopments. Having in mind D. Hilbert’s view according to which logic is
a metamathematics one can see that logical pluralism implies the plurality of
mathematics, i.e., the plurality of mathematical pictures of the world.

Describing the Classical science Kant famously remarked that “each science
is as much a science as much there is mathematics in it”. Can one really expect
a ‘pluralization’ of such scientific disciplines as physics and biology along
with the pluralization of mathematics? From the Classical point of view the
answer should be affirmative. However, we are living in the epoch of post-
non-Classical rather than Classical science. For this reason scientific pluralism
is limited with a variety of systems of social values and goals, which dictate
choices of our research strategies. According to V. S. Stepin

The post-non-classical type of scientific rationality broadens the field of
reflection over activity. It takes into account correlation of obtained knowl-
edge of the object not only with specificity of means and operations of
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activity, but also with value-goal structures. Here we explicate the con-
nection between intrascience goals and extra-scientific, social values and
goals. [26] p. 634]

So the pluralism of the modern logic is rather a precondition of freedom in
our choices of logical toolkits, which determines directions of our researches.

The development of logic in the 20-th century made clear that certain meta-
logical characteristics which were earlier believed to be universal were actually
not universal. This concerns, in particular, the completeness and the consis-
tency of logical systems, which make no sense in the case of paraconsistent
logical systems (albeit they have such properties as paraconsistency and para-
completeness). Notice that Relevant logics can be paraconsistent and at the
same time consistent and complete. Such facts provide an additional evidence
in favour of the post-non-Classical view according to which a logician or a
mathematician should select his or her formal toolkit on the basis of certain
goals, values and norms.
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